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Abstract—The widespread availability of surveillance cameras
and digital technology has improved video based security mea-
sures in public places. Surveillance systems have been assisting
of•cials both in civil and military applications. It is help ing to
identify unlawful activities by means of uninterrupted tra ns-
mission of surveillance videos. By this, the system is adding
extraneous onus on to the already existing workload of security
of•cers. Instead, if the surveillance system is intelligent and
ef•cient enough to identify the events of interest and alert
the of•cers, it alleviates the burden of continuous monitoring.
In other words, our existing surveillance systems are lacking
to identify the objects that are dissimilar in shape, size, and
color especially in identifying human beings (nonrigid motions).
Global illumination changes, frequent occurrences of shadows,
insuf•cient lighting conditions, unique properties of slow and
fast moving objects, unforeseen appearance of objects and its
behavior, availability of system memory, etc., may be ascribed to
the limitations of existing systems. In this paper, we present a
•ltering technique to extract foreground information, whi ch uses
RGB component and chrominance channels to neutralize the
effects of nonuniform illumination, remove shadows, and detect
both slow-moving and distant objects.

Index Terms—Background segmentation, foreground extrac-
tion, frame differencing, occlusion, human tracking.

I. I NTRODUCTION

With the advancement in processing and computation tech-
nologies, surveillance systems have gained widespread atten-
tion due to their indispensable roles in our lives. Surveillance
systems supply adequate information to policing authorities
for further legal investigations, essentially protectingour com-
munity for better prosperity. However, most of the existing
systems require manual intervention to monitor continuously
and to identify the human activities, which is a tiresome
task. Although we have our advanced modern-day engineering
solutions and computational techniques in place, the systems
are still devoid of sophisticated techniques to autonomously
detect human activities.

In the process of motion detection and estimation for object
tracking, background segmentation is the most critical of
all. Often, the segmentation process can be normal, over-
segmented or under-segmented [1]. The two most widely
available methods for background segmentation are frame
differencing [2] and background subtraction based on back-
ground modeling. The resulting difference can be binarized
based on global thresholding [3] or multiple thresholds [4].
Additionally, accumulative difference image is an anotherway

to segment the background from the foreground [5]. The most
popular background modeling method is the weighted Mixture
of Gaussians (MoG) model [6], [7].

Our objective of this work is to effectively extract fore-
ground objects that are elastic in nature such as humans. We
consider the background to be dynamic (constantly changing,
occluded by objects and at times background may never
be visible). We make no explicit assumptions of the object
features (color, region, spatial connectedness, velocityetc).
We also consider nonuniform illumination conditions, cast
shadows and transient noise as inherently random and are
part of the detection process. In addition, we would like the
detection to be computed in near real-time (without buffering
more than one frame for computation and having a previous
output) and the output be binarized so that the logic1 values
correspond to the foreground.

In this paper, we present a new processing technique
that is purely based on consecutive frame differencing. The
technique uses RGB component channels, converts RGB to
grayscale and chrominance signals , handling multi-object
cases ef caciously. The  ltering technique is shown to provide
comparable accurate foreground extraction. The techniquewas
applied on three different datasets and the results have been
presented along with execution time for individual datasets.
We are not comparing our execution times with others, but are
mentioning the time taken by our technique for three different
datasets close to practicable real-time processing.

This paper is organized as follows: Literature review is
presented in Section II. Section III provides the details ofthe
technique followed by the results in Section IV. Discussions
and conclusion are included in Sections V and VI, respectively.

II. L ITERATURE REVIEW

In order to extract foreground information from the scene,
we would ideally like to build a model of the scene from the
instant the view is available. One way is to estimate the back-
ground from the scene and subtract from the new frame. The
other way is to extract foreground directly such as intensity
thresholding. Kilger [3] used intensity-based thresholding to
separate the fast-moving and slow-moving/no-motion objects
from the background. However, determination of optimal
threshold remained empirical. Kaup and Aach [8] proposed
a novel algorithm to predict the uncovered background using
spatial correlation and motion information along with temporal



correlation. However, the ever changing dynamic background
would not be able to uncover the background using spatial
correlation nor temporal history.

In 1997, Wrenet al. [9] used a single-Gaussian multi-
class statistical pixel-based model (P nder) for trackingand
detection of people. The drawback was that the scene was
modeled assuming relatively static background with a single
foreground object to be tracked. Stauffer and Grimson [6],
[7] generalized the notion of adaptive background modeling
using mixture of Gaussians (MoG). In this approach, pixel
values were not explicitly classi ed as belonging to a sin-
gle distribution, instead, values were based on mixture of
Gaussians. Each pixel value was modeled as a mixture of
Gaussian of recently observed pixel values. A new Gaussian
was created by replacing the least probable Gaussian from
an open-ended list of Gaussians to incorporate the new pixel
value. Depending on the consistency and variance of the pixel
values, the pixel that did not  t into any of the Gaussians was
labeled as foreground. Elgammalet al. [10], [11] modeled the
background using kernel density estimation of recent values of
a pixel. In general, the Gaussian-based background estimations
perform well when the background covers most of the area
of the scene, is less !uctuating and the objects in the scene
are mostly inelastic. Algorithms applied to rigid objects are
relatively easier because of the spatial connectedness of the
objects.

Oliver et al. [12] used observed background variations for
eigenspace creation and followed by eigenvalue decomposition
for background subtraction. However, we would like to have
no prior knowledge of the scene. The correlation property of
the background used by Sekiet al. [13] holds only when
the background is varying based on certain mathematical
model and area to be  lled is small in comparison to the
objects that created the patch. Algorithms such as running
running Gaussian average [14] lose edge information, which
is necessary in identi cation of occluding contours [15].

Modeling of the background based on minimum and max-
imum variation of the pixels [16] would suit for backgrounds
where change is relatively stationary. Techniques such as
temporal median  lter [17] requires large amounts of memory,
produces delay in the output. Moreover, if the background
is nonstationary (occupied with moving objects), background
modeling would not capture the true background information.

Zhao et al. [18] used the approach of [9] to model
background, where each pixel is modeled as an independent
color Gaussian distribution. However, they use the background
model based on the scene where no objects are present. In
2003, Zhao and Nevatia [19] approached the problem of
segmentation (human crowd with occlusion) using3D models
to interpret the foreground, but shape models require de nitive
position, angle and size of the objects for accurate results. In
2011, Barnich and Droogenbroeck [20] presented a universal
background subtraction technique based on Euclidean distance
between the new pixel value and the existing values, but this
method requires suf cient number of samples.

Although many methods exist for segmentation, each one

of them produce accurate results under certain conditions.
The idea of our work is to develop a generalized and quick
approach for foreground extraction in monitoring crowded
spaces. Due to the variation of lighting condition of these
uncontrolled environment such as stadiums, tunnels, stations
and other public spaces during the course of the day, there
is a critical need to develop robust algorithms which extract
foreground quickly enough to accommodate environmental
changes. In doing so, we have selected 2 publicly avail-
able datasets and collected a unique dataset from Melbourne
Cricket Ground (MCG) to demonstrate the effectiveness of
the proposed technique. The following section provides the
methodology used for background segmentation under differ-
ent circumstances by controlling the sensitivity of the  lter.

III. M ETHODOLOGY

This section provides the detailed implementation of the
methodology. We are utilizing RGB and chrominance channels
for extracting the foreground. The equations provided in this
section were derived experimentally. To begin with, in a given
frame, every pixel (for a given color space) has a value
associated with it. Let us consider a pixel,I (x i ; yj ), where
I stands for image;x i and yj represent the coordinate of
a two-dimensional spaceX and Y ; i represents thei th row
and j represents thej th column. The color spaceSc contains
different elements based on the color model (c) chosen. An
image I (x i ; yj ; tn ) refers to a frame at timetn , n refers to
the time sequence index (i.e.tn ; tn +1 ; � � � ; < 1 ) in a video
sequence. Therefore, for any pixelI (x i ; yj ; tn ) in a video
frame, the following holds true

I (x i ; yj ; tn ) � Sc; x i ; yj 2 Z; (1)

where 0 � Sc � L ! 1. Also, L := f l i : 0 < l i �
K; and l i ; K 2 Z+ g, where i is the indicator of the level,
K de nes upper-bound onL . The simplest way of detecting
the motion is to take the difference of two frames given by:,

I (x i ; yj )n +1 = I (x i ; yj ; tn +1 ) ! I (x i ; yj ; tn ) (2)

To account for negative values, we take the absolute value of
the difference, is given by:

jI (x i ; yj )n +1 j = jI (x i ; yj ; tn +1 ) ! I (x i ; yj ; tn )j � L (3)

The binary classi cation of the objects are based on a thresh-
old, given by:

I B (x; y) =

(
0; if jI (x i ; yj )j < l;
1; if jI (x i ; yj )j � l

(4)

where0 < l < L , I B stands for binary image. Usually, the
thresholdl is decided based on the modality distribution of
jI (x i ; yj )j.

The !owchart of the proposed approach is shown in the Fig.
1 and the steps are detailed below:

1) In order to provide complete change in the scene, the
absolute values of successive frame differences with



threshold set at zero intensity is computed:

I (x; y)abs = jI (x i ; yj )n +1 j > 0

= jI (x i ; yj ; tn +1 ) ! I (x i ; yj ; tn )j > 0
(5)

2) Forward  ltering using green and blue channels was
performed (note that the operations from steps2 to 5 are
being performed on second frame i.e.I forward represents
I (x; y; t n +1 )forward):

I forward =
j
I (x i ; yj ; tn +1 ; g)2 ! I (x i ; yj ; tn +1 ; b)

k
(6)

This  lter essentially uncovers the small magnitude
intensities and suppresses the existing predominant in-
tensities.

3) Next, the inverse of the  lter is provided by  rst replac-
ing the null values ofI forward given by:

I (x i ; yj ; tn +1 )replace=

(
1; if I forward = 0

I forward; otherwise
(7)

Now, the inverse of the  ltering operation was performed
to enhance the naturally dominant light sources and is
given by:

I (x i ; yj ; tn +1 ) inverse=
1�

�
�I (x i ; yj ; tn +1 )replace

�
�
�

(8)

4) Further, the difference betweenI (x i ; yj ; tn +1 ; g) and
I (x i ; yj ; tn +1 ; b) would provide the essential objects
with constantly illuminated regions. To remove the il-
lumination effects, we use:

I illumination = jI (x; y; t n +1 ; g) ! I (x; y; t n +1 ; b)j (9)

5) Chrominance signals, which supply information about
the objects that are sensitive to Cb and Cr channels were
processed:

I CbCr = ( Cr [ I illumination) + Cb
0

(10)

whereCb
0

is the negative (complement) of Cb channel.
This forms the sensitivity of the  lter.

6) Finally, the foreground objects were obtained by per-
forming the following operation:

objects=
n

f (I forward ! I inverse) ! I CbCrg + I (x; y)abs

o

(11)
Note: the system variablesu and l represent the intensity
of percentage of upper and lower pixel values derived from
histogram of the respective processed images to be saturated
in order to enhance the objects;k is the sensitivity of the  lter
to extract the foreground effectively.

IV. RESULTS

The above technique of processing the video was applied on
three different datasets for evaluation. Fig. 2 depicts theoutput
from various stages applied on Context Aware Vision us-
ing Image-based Active Recognition (CAVIAR) dataset [21].
Likewise, Fig. 3 and Fig. 4 delineate the outputs when
applied on Advanced Video and Signal based Surveillance
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Fig. 1. Flowchart of foreground extraction

(AVSS) [22] and Melbourne Cricket Ground (MCG) datasets
respectively. The captions of each of the  gure contain the
detailed sequential steps involved in processing. All video
 les were converted manually to Audio Video Interleave
(AVI) format before the method was applied. WMV version
1 (WMP7) was used for conversion into AVI format. Ta-
ble I provides the details of the dataset information. The
frames were processed sequentially (with no skips between
frames). All implementations were done in MATLAB7:12
using Computer Vision System Toolbox on Windows XP (SP2
Professional, 32-bit system) equipped with an IntelR
 i7! 2600
CPU running at3:4 GHz. The system also included512 MB
ATI Radeon

TM
HD 5450Graphics card. From the results, it is

clear that the frame difference output alone is insuf cientto
provide information for future processing. To illustrate,Fig.
2a and Fig. 3a output provides meagre information in spite
of absolute frame difference. In contrast, the variance is high
in video of Fig. 4a, providing more information. Figs. 2b, 3b,
and 4b denote the regions in a video sequence where the
illumination is dominantly present. Figs. 2g, 3g and 4g portray
the output after performing morphological operations. A disk
radius of3 was used for image closing and a3� 3 median  lter
was used for removal of speckles. Figs. 2h, 3h and 4h were
the second frames, respectively, from the video sequence. The
illustrated technique uses only the second frame for processing
except for frame difference (step1), where in both the second
and  rst frame are used. Fig. 3g demonstrates the ability
of the technique to detect abandoned object (stationary) as
well as moving objects; shadow elimination is shown in Fig.
4g together with illumination normalization; sensitivityof
the technique to detect slow-moving and distant objects, and
occluded objects can be seen in Fig. 2g. The blue channel
sensitivity,k cb, was set to0:35, 0:2 and0:9, respectively, for
CAVIAR, AVSS and MCG videos. The red channel sensitivity,
k cr was set to0:9, 0:7 and 0:9 correspondingly. However,
when the object is perceptually brighter, the method fails to



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Dataset from Context Aware Vision using Image-basedActive Recognition (CAVIAR) [21]—(“WalkByShop1cor.mpg”). (2a) frame difference output
(= 220 ! 219), (2b) constantly illuminated region(G ! B ), (2c) illumination normalization(G2 ! B ), (2d) output of forward  lter, (2e) output of inverse
 lter ( 1

G 2 ! B
), (2f) background segmented, (2g) background segmented after morphological operations (image closing with disk radius=3, 3 � 3 median

 lter), (2h) original input (frame220).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Dataset from Advanced Video and Signal based Surveillance (AVSS) [22]—(AVSS AB Hard). (3a) frame difference output (= 3649 ! 3648), (3b)
constantly illuminated region(G ! B ), (3c) illumination normalization(G2 ! B ), (3d) output of forward  lter, (3e) output of inverse  lter( 1

G 2 ! B
), (3f)

background segmented, (3g) background segmented after morphological operations (image closing with disk radius=3, 3 � 3 median  lter), (3h) original input
(frame3649).

detect stationary and slow-moving objects. Nevertheless, this
can be addressed by using existing background subtraction and
motion estimation algorithms. Table II provides the processing
time taken by different datasets.

V. D ISCUSSION

For a given video frameI (x i ; yj )n , let O := f o : o 2
I (x i ; yj )n g be the pixels corresponding to the foreground
objects andB := f b : b 2 I (x i ; yj )n g be the background
pixels such thatf O \ B = ;g . The major drawback of

the global thresholding approach is that the distribution of
pixels, which is determined statistically, are discarded from
a collective set of pixels as background. More formally, let
D := f d : 0 6= d 2 I (x; y) i g, then the threshold operation may
be considered as injective mapping of a subset of elements of
D to the foregroundF . i.e. let W � D , then,

T : W (T) " F (T)

where8w 2 W > l . However,T fails to consider the elements
D \ W 6= f;g , which would limit the foreground toF jW



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Dataset from Melbourne Cricket Ground (MCG). (4a) frame difference output (frame= 13 ! 12), (4b) constantly illuminated region(G ! B ), (4c)
illumination normalization(G2 ! B ), (4d) output of forward  lter, (4e) output of inverse  lter,(4f) background segmented, (4g) background segmented after
morphological operations (image closing with disk radius=3, 3 � 3 median  lter), (4h) original input (frame13).

TABLE I
DATASET INFORMATION

Dataset CAVIAR AVSS MCG

O
rig

in
al

Size (in pixels) 384 � 288 720 � 576 680 � 480

Frame rate (per sec) 25 25 30

Data rate (kbps) 1155 3911 1868

Duration (minutes) 1 : 34 3 : 38 14 : 01

File format MPEG AVI ASF

C
on

ve
rt

ed

Frame rate (per sec) 25 25 25

Data rate (kbps) 829 3047 1502

Duration (minutes) 1 : 34 3 : 39 14 : 01

File format AVI AVI AVI

TABLE II
TIME TAKEN TO PROCESS VIDEO FOR FIRST100 FRAMES

Dataset CAVIAR AVSS MCG

Initialization time (s)? 1:386380 1:4954050 1:4356340

Total time (s) 9:478341 19:884810 16:581148

Average processing time (s) 0:080919 0:1838940 0:1514551

For 30 frames (s) 2:427588 5:5168215 4:5436542
? initialization time is the time to produce the  rst iteration output

instead ofF jD . Then, considering the nonlinear operator T
such thatT : W (T) " F (T)

F =
n

T
�

jI (x i ; yj )n +1 j � L
�

[ T
�

jI (x i ; yj )n +1 = 0 j
�o

(12)

where, the  rst term in the righthand side of the equation
is controlled by the threshold level. Therefore, it is evident
that the thresholding operation alone limits the available
information to be transferred to the foreground setF .

The frame difference between two sequential video frames

can segment the foreground from the background based on the
applied threshold. However, the degree to which this can be
achieved depends on the motion component of the scene at
different regions and on the threshold. The higher the motion
the more prominent the change is and consequently, more
likely the change will be detected; hence, the thresholdingcan
easily separate the background and foreground. To achieve this
either the motion component has to be increased by skipping
a few frames and then  nd the difference, or process the
difference between consecutive frames using another method
so as to obtain the motion component quite clearly. We adopted
the latter approach in our methodology. The moving objects
closer to camera are easily identi ed in case of background
segmentation is by the fact that they exhibit distinguishable
variance from the background. This can be reasoned out as a
direct result of increased variance: the vertical and horizontal
motion appear distinctly compared to the rest of the regions.
The traits of slow-moving objects are closely coupled with
that of background in terms of temporal features such as
the displacement. Hence, to ascertain the detection of both
slow-moving objects (even a countably in nitesimal change)
and fast-moving objects, and distant objects, we adopted the
absolute frame difference and the threshold was set to the
smallest change by(jl i j > 0).

It is observed that when there is a saturation of light in a
particular region, the three independent color channels tend
to saturate equally. Because of this, most of the methods
that extract foreground from the background are unable to
give equal weightage to all the regions in a frame. By
calculatingG2 ! B (as in step 2), we are in fact, focusing
on unilluminated regions: saturated regions are negated inthe
process of subtraction and small intensity values are ampli ed.
The regions of constant illumination are found by performing



G ! B result. Thek cb andk cr values usually lie between
0:3 and0:9. Increasing these values introduce noise when no
objects are found in the scene. The increased values accentuate
small object variations and consequently the image noise. The
values should be kept low unless extremely high sensitivityis
required. This method compliments the existing algorithmsin
that the combination of the above-mentioned method and the
existing foreground extraction methods would greatly improve
the segmentation of the background from foreground.

The elastic nature of human motion is handled by means
of union of G2 ! B and its inverse 1

G 2 ! B
(zeros excluded by

replacing them with 1) to include both the occluded and un-
occluded objects. This method is sensitive to be operated under
covered regions and highly darker objects. However, there
will be circumstances where the method can fail to segment
the foreground objects completely when the scene is entirely
illuminated. In this case even the existing methods would be
unable to recognize the motion. Nonetheless, ef cient imple-
mentation of a tracking algorithm can determine the path of the
objects and recover the parts of the objects to a greater extent.
Depending on the scene, the sensitivity of the chrominance
channels can control the degree of detection of both moving
and stationary objects. In our methodology, we did not explic-
itly handle problems with shadows. Shadows were eliminated
to a greater extent with help of  ltering techniques presented
above (implicit shadow removal by combination of different
signal processing presented previously). Further analysis is
required in handling shadows under different conditions.

VI. CONCLUSION

In conclusion, a foreground extraction technique using
component, intensity and chrominance channels has been
presented. The segmentation of the foreground from the back-
ground was achieved by taking the absolute frame differences
and adjusting the sensitivity of a given frame by making use
of component and chrominance channels. Component signals
were used for reducing change in illumination and removal
of shadows. Grayscale was used for motion detection based
on frame differencing and absolute thresholding. Chrominance
channels were used to set the sensitivity of segmentation pro-
cess. The method also demonstrated to be useful in stationary
object detection as well. The proposed method was tested on
three different datasets with promising results.
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