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Abstract—The widespread availability of surveillance cameras
and digital technology has improved video based security mea-
sures in public places. Surveillance systems have been assisting
officials both in civil and military applications. It is helping to
identify unlawful activities by means of uninterrupted trans-
mission of surveillance videos. By this, the system is adding
extraneous onus on to the already existing workload of security
officers. Instead, if the surveillance system is intelligent and
efficient enough to identify the events of interest and alert
the officers, it alleviates the burden of continuous monitoring.
In other words, our existing surveillance systems are lacking
to identify the objects that are dissimilar in shape, size, and
color especially in identifying human beings (nonrigid motions).
Global illumination changes, frequent occurrences of shadows,
insufficient lighting conditions, unique properties of slow and
fast moving objects, unforeseen appearance of objects and its
behavior, availability of system memory, etc., may be ascribed to

the limitations of existing systems. In this paper, we present a
filtering technique to extract foreground information, which uses
RGB component and chrominance channels to neutralize the
effects of nonuniform illumination, remove shadows, and detect
both slow-moving and distant objects.

Index Terms—Background segmentation, foreground extrac-
tion, frame differencing, occlusion, human tracking.

I. INTRODUCTION

With the advancement in processing and computation tech-

nologies, surveillance systems have gained widespread atten-

tion due to their indispensable roles in our lives. Surveillance

systems supply adequate information to policing authorities

for further legal investigations, essentially protecting our com-

munity for better prosperity. However, most of the existing

systems require manual intervention to monitor continuously

and to identify the human activities, which is a tiresome

task. Although we have our advanced modern-day engineering

solutions and computational techniques in place, the systems

are still devoid of sophisticated techniques to autonomously

detect human activities.

In the process of motion detection and estimation for object

tracking, background segmentation is the most critical of

all. Often, the segmentation process can be normal, over-

segmented or under-segmented [1]. The two most widely

available methods for background segmentation are frame

differencing [2] and background subtraction based on back-

ground modeling. The resulting difference can be binarized

based on global thresholding [3] or multiple thresholds [4].

Additionally, accumulative difference image is an another way

to segment the background from the foreground [5]. The most

popular background modeling method is the weighted Mixture

of Gaussians (MoG) model [6], [7].

Our objective of this work is to effectively extract fore-

ground objects that are elastic in nature such as humans. We

consider the background to be dynamic (constantly changing,

occluded by objects and at times background may never

be visible). We make no explicit assumptions of the object

features (color, region, spatial connectedness, velocity etc).

We also consider nonuniform illumination conditions, cast

shadows and transient noise as inherently random and are

part of the detection process. In addition, we would like the

detection to be computed in near real-time (without buffering

more than one frame for computation and having a previous

output) and the output be binarized so that the logic 1 values

correspond to the foreground.

In this paper, we present a new processing technique

that is purely based on consecutive frame differencing. The

technique uses RGB component channels, converts RGB to

grayscale and chrominance signals , handling multi-object

cases efficaciously. The filtering technique is shown to provide

comparable accurate foreground extraction. The technique was

applied on three different datasets and the results have been

presented along with execution time for individual datasets.

We are not comparing our execution times with others, but are

mentioning the time taken by our technique for three different

datasets close to practicable real-time processing.

This paper is organized as follows: Literature review is

presented in Section II. Section III provides the details of the

technique followed by the results in Section IV. Discussions

and conclusion are included in Sections V and VI, respectively.

II. LITERATURE REVIEW

In order to extract foreground information from the scene,

we would ideally like to build a model of the scene from the

instant the view is available. One way is to estimate the back-

ground from the scene and subtract from the new frame. The

other way is to extract foreground directly such as intensity

thresholding. Kilger [3] used intensity-based thresholding to

separate the fast-moving and slow-moving/no-motion objects

from the background. However, determination of optimal

threshold remained empirical. Kaup and Aach [8] proposed

a novel algorithm to predict the uncovered background using

spatial correlation and motion information along with temporal



correlation. However, the ever changing dynamic background

would not be able to uncover the background using spatial

correlation nor temporal history.

In 1997, Wren et al. [9] used a single-Gaussian multi-

class statistical pixel-based model (Pfinder) for tracking and

detection of people. The drawback was that the scene was

modeled assuming relatively static background with a single

foreground object to be tracked. Stauffer and Grimson [6],

[7] generalized the notion of adaptive background modeling

using mixture of Gaussians (MoG). In this approach, pixel

values were not explicitly classified as belonging to a sin-

gle distribution, instead, values were based on mixture of

Gaussians. Each pixel value was modeled as a mixture of

Gaussian of recently observed pixel values. A new Gaussian

was created by replacing the least probable Gaussian from

an open-ended list of Gaussians to incorporate the new pixel

value. Depending on the consistency and variance of the pixel

values, the pixel that did not fit into any of the Gaussians was

labeled as foreground. Elgammal et al. [10], [11] modeled the

background using kernel density estimation of recent values of

a pixel. In general, the Gaussian-based background estimations

perform well when the background covers most of the area

of the scene, is less fluctuating and the objects in the scene

are mostly inelastic. Algorithms applied to rigid objects are

relatively easier because of the spatial connectedness of the

objects.

Oliver et al. [12] used observed background variations for

eigenspace creation and followed by eigenvalue decomposition

for background subtraction. However, we would like to have

no prior knowledge of the scene. The correlation property of

the background used by Seki et al. [13] holds only when

the background is varying based on certain mathematical

model and area to be filled is small in comparison to the

objects that created the patch. Algorithms such as running

running Gaussian average [14] lose edge information, which

is necessary in identification of occluding contours [15].

Modeling of the background based on minimum and max-

imum variation of the pixels [16] would suit for backgrounds

where change is relatively stationary. Techniques such as

temporal median filter [17] requires large amounts of memory,

produces delay in the output. Moreover, if the background

is nonstationary (occupied with moving objects), background

modeling would not capture the true background information.

Zhao et al. [18] used the approach of [9] to model

background, where each pixel is modeled as an independent

color Gaussian distribution. However, they use the background

model based on the scene where no objects are present. In

2003, Zhao and Nevatia [19] approached the problem of

segmentation (human crowd with occlusion) using 3D models

to interpret the foreground, but shape models require definitive

position, angle and size of the objects for accurate results. In

2011, Barnich and Droogenbroeck [20] presented a universal

background subtraction technique based on Euclidean distance

between the new pixel value and the existing values, but this

method requires sufficient number of samples.

Although many methods exist for segmentation, each one

of them produce accurate results under certain conditions.

The idea of our work is to develop a generalized and quick

approach for foreground extraction in monitoring crowded

spaces. Due to the variation of lighting condition of these

uncontrolled environment such as stadiums, tunnels, stations

and other public spaces during the course of the day, there

is a critical need to develop robust algorithms which extract

foreground quickly enough to accommodate environmental

changes. In doing so, we have selected 2 publicly avail-

able datasets and collected a unique dataset from Melbourne

Cricket Ground (MCG) to demonstrate the effectiveness of

the proposed technique. The following section provides the

methodology used for background segmentation under differ-

ent circumstances by controlling the sensitivity of the filter.

III. METHODOLOGY

This section provides the detailed implementation of the

methodology.We are utilizing RGB and chrominance channels

for extracting the foreground. The equations provided in this

section were derived experimentally. To begin with, in a given

frame, every pixel (for a given color space) has a value

associated with it. Let us consider a pixel, I(xi, yj), where
I stands for image; xi and yj represent the coordinate of

a two-dimensional space X and Y ; i represents the ith row

and j represents the j th column. The color space Sc contains

different elements based on the color model (c) chosen. An

image I(xi, yj, tn) refers to a frame at time tn, n refers to

the time sequence index (i.e. tn, tn+1, · · · , < ∞) in a video

sequence. Therefore, for any pixel I(xi, yj , tn) in a video

frame, the following holds true

I(xi, yj , tn) ⊆ Sc, xi, yj ∈ Z, (1)

where 0 ≤ Sc ≤ L − 1. Also, L := {li : 0 < li ≤
K, and li,K ∈ Z+}, where i is the indicator of the level,

K defines upper-bound on L. The simplest way of detecting

the motion is to take the difference of two frames given by:,

I(xi, yj)n+1 = I(xi, yj, tn+1)− I(xi, yj, tn) (2)

To account for negative values, we take the absolute value of

the difference, is given by:

|I(xi, yj)n+1| = |I(xi, yj, tn+1)− I(xi, yj, tn)| ≤ L (3)

The binary classification of the objects are based on a thresh-

old, given by:

IB(x, y) =

{

0, if |I(xi, yj)| < l,

1, if |I(xi, yj)| ≥ l
(4)

where 0 < l < L, IB stands for binary image. Usually, the

threshold l is decided based on the modality distribution of

|I(xi, yj)|.
The flowchart of the proposed approach is shown in the Fig.

1 and the steps are detailed below:

1) In order to provide complete change in the scene, the

absolute values of successive frame differences with



threshold set at zero intensity is computed:

I(x, y)abs = |I(xi, yj)n+1| > 0

= |I(xi, yj , tn+1)− I(xi, yj , tn)| > 0
(5)

2) Forward filtering using green and blue channels was

performed (note that the operations from steps 2 to 5 are
being performed on second frame i.e. Iforward represents

I(x, y, tn+1)forward):

Iforward =
⌊

I(xi, yj , tn+1, g)
2 − I(xi, yj, tn+1, b)

⌋

(6)

This filter essentially uncovers the small magnitude

intensities and suppresses the existing predominant in-

tensities.

3) Next, the inverse of the filter is provided by first replac-

ing the null values of Iforward given by:

I(xi, yj, tn+1)replace =

{

1, if Iforward = 0

Iforward, otherwise
(7)

Now, the inverse of the filtering operation was performed

to enhance the naturally dominant light sources and is

given by:

I(xi, yj , tn+1)inverse =
1

∣

∣

∣
I(xi, yj, tn+1)replace

∣

∣

∣

(8)

4) Further, the difference between I(xi, yj, tn+1, g) and

I(xi, yj , tn+1, b) would provide the essential objects

with constantly illuminated regions. To remove the il-

lumination effects, we use:

Iillumination = |I(x, y, tn+1, g)− I(x, y, tn+1, b)| (9)

5) Chrominance signals, which supply information about

the objects that are sensitive to Cb and Cr channels were

processed:

ICbCr = (Cr ∪ Iillumination) + Cb
′

(10)

where Cb
′

is the negative (complement) of Cb channel.

This forms the sensitivity of the filter.

6) Finally, the foreground objects were obtained by per-

forming the following operation:

objects =
{

{(Iforward − Iinverse)− ICbCr}+ I(x, y)abs

}

(11)

Note: the system variables u and l represent the intensity

of percentage of upper and lower pixel values derived from

histogram of the respective processed images to be saturated

in order to enhance the objects; k is the sensitivity of the filter

to extract the foreground effectively.

IV. RESULTS

The above technique of processing the video was applied on

three different datasets for evaluation. Fig. 2 depicts the output

from various stages applied on Context Aware Vision us-

ing Image-based Active Recognition (CAVIAR) dataset [21].

Likewise, Fig. 3 and Fig. 4 delineate the outputs when

applied on Advanced Video and Signal based Surveillance

Difference

| Frame 2 � Frame 1 |

Forward filter

|(Frame 2g )
2

� (Frame 2
b
)|

Constant illumination

|(Frame 2g ) � (Frame 2
b
)| 

Video 

input

Two consecutive 

frames

l=10, 

u=90,

l=10, 

u=90,

l=50, 

u=90,

Inverse filter

1 / |forward filter  

output|

� determine the contrast 

stretchable limits

� saturate (lower l % and 

upper u %)

� Set values > k * max 

(stretchable values) to 

255 and others to 0

Foreground= [{(Forward � Inverse)�Constant�Colour} + {Difference}]

l=10, 

u=90,

k=0.2

cb, cr channel

(sensitivity)

Colour saturation

[cr AND (NOT(cb))] 

OR Constant

k=1k=1 k=0.7

k_cb

k_cr

Fig. 1. Flowchart of foreground extraction

(AVSS) [22] and Melbourne Cricket Ground (MCG) datasets

respectively. The captions of each of the figure contain the

detailed sequential steps involved in processing. All video

files were converted manually to Audio Video Interleave

(AVI) format before the method was applied. WMV version

1 (WMP7) was used for conversion into AVI format. Ta-

ble I provides the details of the dataset information. The

frames were processed sequentially (with no skips between

frames). All implementations were done in MATLAB 7.12
using Computer Vision System Toolbox on Windows XP (SP2

Professional, 32-bit system) equipped with an Intel R© i7−2600
CPU running at 3.4 GHz. The system also included 512 MB

ATI Radeon
TM

HD 5450 Graphics card. From the results, it is

clear that the frame difference output alone is insufficient to

provide information for future processing. To illustrate, Fig.

2a and Fig. 3a output provides meagre information in spite

of absolute frame difference. In contrast, the variance is high

in video of Fig. 4a, providing more information. Figs. 2b, 3b,

and 4b denote the regions in a video sequence where the

illumination is dominantly present. Figs. 2g, 3g and 4g portray

the output after performing morphological operations. A disk

radius of 3 was used for image closing and a 3×3 median filter
was used for removal of speckles. Figs. 2h, 3h and 4h were

the second frames, respectively, from the video sequence. The

illustrated technique uses only the second frame for processing

except for frame difference (step 1), where in both the second
and first frame are used. Fig. 3g demonstrates the ability

of the technique to detect abandoned object (stationary) as

well as moving objects; shadow elimination is shown in Fig.

4g together with illumination normalization; sensitivity of

the technique to detect slow-moving and distant objects, and

occluded objects can be seen in Fig. 2g. The blue channel

sensitivity, k cb, was set to 0.35, 0.2 and 0.9, respectively, for
CAVIAR, AVSS and MCG videos. The red channel sensitivity,

k cr was set to 0.9, 0.7 and 0.9 correspondingly. However,

when the object is perceptually brighter, the method fails to



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Dataset from Context Aware Vision using Image-based Active Recognition (CAVIAR) [21]—(“WalkByShop1cor.mpg”). (2a) frame difference output
(= 220− 219), (2b) constantly illuminated region (G− B), (2c) illumination normalization (G2

− B), (2d) output of forward filter, (2e) output of inverse

filter ( 1

G2
−B

), (2f) background segmented, (2g) background segmented after morphological operations (image closing with disk radius=3, 3 × 3 median

filter), (2h) original input (frame 220).

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3. Dataset from Advanced Video and Signal based Surveillance (AVSS) [22]—(AVSS AB Hard). (3a) frame difference output (= 3649− 3648), (3b)
constantly illuminated region (G − B), (3c) illumination normalization (G2

− B), (3d) output of forward filter, (3e) output of inverse filter ( 1

G2
−B

), (3f)
background segmented, (3g) background segmented after morphological operations (image closing with disk radius=3, 3×3 median filter), (3h) original input
(frame 3649).

detect stationary and slow-moving objects. Nevertheless, this

can be addressed by using existing background subtraction and

motion estimation algorithms. Table II provides the processing

time taken by different datasets.

V. DISCUSSION

For a given video frame I(xi, yj)n, let O := {o : o ∈
I(xi, yj)n} be the pixels corresponding to the foreground

objects and B := {b : b ∈ I(xi, yj)n} be the background

pixels such that {O ∩ B = ∅}. The major drawback of

the global thresholding approach is that the distribution of

pixels, which is determined statistically, are discarded from

a collective set of pixels as background. More formally, let

D := {d : 0 6= d ∈ I(x, y)i}, then the threshold operation may
be considered as injective mapping of a subset of elements of

D to the foreground F . i.e. let W ⊂ D, then,

T : W (T ) → F (T )

where ∀w ∈ W > l. However, T fails to consider the elements

D ∩ W 6= {∅}, which would limit the foreground to F |W



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Dataset from Melbourne Cricket Ground (MCG). (4a) frame difference output (frame = 13− 12), (4b) constantly illuminated region (G−B), (4c)
illumination normalization (G2

−B), (4d) output of forward filter, (4e) output of inverse filter, (4f) background segmented, (4g) background segmented after
morphological operations (image closing with disk radius=3, 3× 3 median filter), (4h) original input (frame 13).

TABLE I
DATASET INFORMATION

Dataset CAVIAR AVSS MCG

O
ri
g
in
a
l

Size (in pixels) 384 × 288 720× 576 680 × 480

Frame rate (per sec) 25 25 30

Data rate (kbps) 1155 3911 1868

Duration (minutes) 1 : 34 3 : 38 14 : 01

File format MPEG AVI ASF

C
o
n
v
er
te
d

Frame rate (per sec) 25 25 25

Data rate (kbps) 829 3047 1502

Duration (minutes) 1 : 34 3 : 39 14 : 01

File format AVI AVI AVI

TABLE II
TIME TAKEN TO PROCESS VIDEO FOR FIRST 100 FRAMES

Dataset CAVIAR AVSS MCG

Initialization time (s) ? 1.386380 1.4954050 1.4356340

Total time (s) 9.478341 19.884810 16.581148

Average processing time (s) 0.080919 0.1838940 0.1514551

For 30 frames (s) 2.427588 5.5168215 4.5436542

? initialization time is the time to produce the first iteration output

instead of F |D. Then, considering the nonlinear operator T

such that T : W (T ) → F (T )

F =
{

T
(

|I(xi, yj)n+1| ≤ L
)

∪ T
(

|I(xi, yj)n+1 = 0|
)}

(12)

where, the first term in the righthand side of the equation

is controlled by the threshold level. Therefore, it is evident

that the thresholding operation alone limits the available

information to be transferred to the foreground set F .

The frame difference between two sequential video frames

can segment the foreground from the background based on the

applied threshold. However, the degree to which this can be

achieved depends on the motion component of the scene at

different regions and on the threshold. The higher the motion

the more prominent the change is and consequently, more

likely the change will be detected; hence, the thresholding can

easily separate the background and foreground. To achieve this

either the motion component has to be increased by skipping

a few frames and then find the difference, or process the

difference between consecutive frames using another method

so as to obtain the motion component quite clearly. We adopted

the latter approach in our methodology. The moving objects

closer to camera are easily identified in case of background

segmentation is by the fact that they exhibit distinguishable

variance from the background. This can be reasoned out as a

direct result of increased variance: the vertical and horizontal

motion appear distinctly compared to the rest of the regions.

The traits of slow-moving objects are closely coupled with

that of background in terms of temporal features such as

the displacement. Hence, to ascertain the detection of both

slow-moving objects (even a countably infinitesimal change)

and fast-moving objects, and distant objects, we adopted the

absolute frame difference and the threshold was set to the

smallest change by (|li| > 0).

It is observed that when there is a saturation of light in a

particular region, the three independent color channels tend

to saturate equally. Because of this, most of the methods

that extract foreground from the background are unable to

give equal weightage to all the regions in a frame. By

calculating G2 − B (as in step 2), we are in fact, focusing

on unilluminated regions: saturated regions are negated in the

process of subtraction and small intensity values are amplified.

The regions of constant illumination are found by performing



G −B result. The k cb and k cr values usually lie between

0.3 and 0.9. Increasing these values introduce noise when no

objects are found in the scene. The increased values accentuate

small object variations and consequently the image noise. The

values should be kept low unless extremely high sensitivity is

required. This method compliments the existing algorithms in

that the combination of the above-mentioned method and the

existing foreground extraction methods would greatly improve

the segmentation of the background from foreground.

The elastic nature of human motion is handled by means

of union of G2 −B and its inverse 1

G2
−B

(zeros excluded by

replacing them with 1) to include both the occluded and un-

occluded objects. This method is sensitive to be operated under

covered regions and highly darker objects. However, there

will be circumstances where the method can fail to segment

the foreground objects completely when the scene is entirely

illuminated. In this case even the existing methods would be

unable to recognize the motion. Nonetheless, efficient imple-

mentation of a tracking algorithm can determine the path of the

objects and recover the parts of the objects to a greater extent.

Depending on the scene, the sensitivity of the chrominance

channels can control the degree of detection of both moving

and stationary objects. In our methodology, we did not explic-

itly handle problems with shadows. Shadows were eliminated

to a greater extent with help of filtering techniques presented

above (implicit shadow removal by combination of different

signal processing presented previously). Further analysis is

required in handling shadows under different conditions.

VI. CONCLUSION

In conclusion, a foreground extraction technique using

component, intensity and chrominance channels has been

presented. The segmentation of the foreground from the back-

ground was achieved by taking the absolute frame differences

and adjusting the sensitivity of a given frame by making use

of component and chrominance channels. Component signals

were used for reducing change in illumination and removal

of shadows. Grayscale was used for motion detection based

on frame differencing and absolute thresholding. Chrominance

channels were used to set the sensitivity of segmentation pro-

cess. The method also demonstrated to be useful in stationary

object detection as well. The proposed method was tested on

three different datasets with promising results.

ACKNOWLEDGMENT

This work is partially supported by the ARC linkage project

LP1232434, partnering the University of Melbourne, Mel-

bourne Cricket Club and ARUP. Authors thank Paul Stanley,

Andrew Maher, George Kazantzidis (all from ARUP), Trevor

Dohnt (from MCG) and the staff of MCG who were very

helpful during the project.

REFERENCES

[1] Z. Zhang, H. Gunes, and M. Piccardi, “Tracking people in crowds
by a part matching approach,” in Proceedings of the 2008 IEEE
Fifth International Conference on Advanced Video and Signal Based
Surveillance, ser. AVSS ’08. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 88–95.

[2] R. Gonzalez and R. Woods, Digital Image Processing (3rd Edition).
Prentice Hall, 2007.

[3] M. Kilger, “A shadow handler in a video-based real-time traffic mon-
itoring system,” in Proceedings of IEEE Workshop on Applications of
Computer Vision, 1992, pp. 11–18.

[4] N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Transactions on Systems, Man and Cybernetics, vol. 9, no. 1, pp.
62–66, 1979.

[5] R. Jain and H. H. Nagel, “On the analysis of accumulative difference
pictures from image sequences of real world scenes,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. PAMI-1, no. 2, pp.
206–214, 1979.

[6] W. E. L. Grimson, C. Stauffer, R. Romano, and L. Lee, “Using adaptive
tracking to classify and monitor activities in a site,” in Proceedings of
the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 1998, pp. 22–29.

[7] C. Stauffer and W. E. L. Grimson, “Adaptive background mixture
models for real-time tracking,” in Proceedings of IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 2, 1999,
pp. 246–252.

[8] A. Kaup and T. Aach, “Efficient prediction of uncovered background in
interframe coding using spatial extrapolation,” in Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal Processing,
vol. V, 1994, pp. V/501–V/504.

[9] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland, “Pfinder: real-
time tracking of the human body,” in Proceedings of the Second
International Conference on Automatic Face and Gesture Recognition,
1996, pp. 51–56.

[10] A. Elgammal, D. Harwood, and L. Davis, “Non-parametric model
for background subtraction,” in Computer Vision ECCV 2000, ser.
Lecture Notes in Computer Science, D. Vernon, Ed. Springer Berlin /
Heidelberg, 2000, vol. 1843, pp. 751–767.

[11] A. Elgammal, R. Duraiswami, D. Harwood, and L. S. Davis, “Back-
ground and foreground modeling using nonparametric kernel density
estimation for visual surveillance,” Proceedings of the IEEE, vol. 90,
no. 7, pp. 1151–1163, 2002.

[12] N. M. Oliver, B. Rosario, and A. P. Pentland, “A bayesian computer
vision system for modeling human interactions,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 831–843,
2000.

[13] M. Seki, T. Wada, H. Fujiwara, and K. Sumi, “Background subtraction
based on cooccurrence of image variations,” in Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2, 2003, pp. II–65–II–72.

[14] J. Zhou and J. Hoang, “Real time robust human detection and tracking
system,” in Proceedings of the IEEE Computer Society Conference
onComputer Vision and Pattern Recognition - Workshops, 2005, pp.
149–149.

[15] B. K. P. Horn, Robot vision. Cambridge, MA, USA: MIT Press, 1986.
[16] I. Haritaoglu, D. Harwood, and L. S. Davis, “W4: Who? when?

where? what? a real time system for detecting and tracking people,” in
Proceedings of the Third IEEE International Conference on Automatic
Face and Gesture Recognition, 1998, pp. 222–227.

[17] I. Haritaoglu, D. Harwood, and L. S. Davis, “A fast background scene
modeling and maintenance for outdoor surveillance,” in Proceedings of
the 15th International Conference on Pattern Recognition, vol. 4, 2000,
pp. 179–183 vol.4.

[18] T. Zhao, R. Nevatia, and F. Lv, “Segmentation and tracking of multiple
humans in complex situations,” in Proceedings of the 2001 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition,
vol. 2, 2001, pp. II–194–II–201.

[19] T. Zhao and R. Nevatia, “Bayesian human segmentation in crowded
situations,” in Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, vol. 2, 2003, pp. II–459–
66.

[20] O. Barnich and M. Van Droogenbroeck, “Vibe: A universal background
subtraction algorithm for video sequences,” IEEE Transactions on Image
Processing, vol. 20, no. 6, pp. 1709–1724, 2011.

[21] R. Fisher, “Clips from shopping center in portugal (2nd set),” 2003-2004.
[Online]. Available: http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/

[22] “i-lids bag and vehicle detection challenge,” 2007. [Online]. Available:
http://www.eecs.qmul.ac.uk/∼andrea/avss2007 d.html


