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Abstract—Analysis of crowd behaviour in public places is an
indispensable tool for video surveillance. Automated detgion
of anomalous crowd behaviour is a critical problem with the
increase in human population. Anomalous events may include
a person loitering about a place for unusual amounts of time;
people running and causing panic; the size of a group of peoel
growing over time etc. In this work, to detect anomalous evets
and objects, two types of feature coding has been proposed:
spatial features and spatio-temporal features. Spatial faures
comprises of contrast, correlation, energy and homogensitwhich
are derived from Gray Level Co-occurrence Matrix (GLCM).
Spatio-temporal feature includes the time spent by an objdc
at different locations in the scene. Hyperspherical clusténg
has been employed to detect the anomalies. Spatial features-
vealed the anomalous frames by using contrast and homogemei
measures. Loitering behaviour of the people were detectedsa
anomalous objects using the spatio-temporal coding.

I. INTRODUCTION

Analysis of crowd behaviour in public places is an in-

a need to address the issue immediately. Automated analysis
provides an unbiased interpretation of the scene, which is
regarded as an important tool in making the right decisions
by the event managers. For instance, consider a stadium like
Melbourne Cricket Ground (MCG), which can accommodate
nearly 100,000 spectators for any sporting event. If there is
any unforeseen circumstance, where people panic and cause a
commotion, the stadium management would face a daunting
task in calming the people down or even attending to the
people. To avoid any untoward issues within the spaces of the
stadium, continuous monitoring of the behaviour of the peop
moving within the limits of stadium is of utmost importance.

According to Barnett and Lewis [1], an anomaly is defined
as “an observation (or subset of observations), which agpea
to be inconsistent with the remainder of that set of data”. In
this work, to detect anomalous frames and objects, two tgpes
feature coding been have been proposed keeping the newly de-
veloped clustering scheme: (1) the spatial features caingyri

dispensable tool for video surveillance. Automated anslys Of contrast, correlation, energy and homogeneity, and&) t

of crowd behaviour has the potential to detect and alert thgPatio-temporal features. Spatial feature are derived fevay
anomalous crowd behaviour in almost real-time. Most of evel Co-occurrence Matrix (GLCM). These features are then

the public places such as stadia, bus stops, movie theate
shopping malls are nowadays equipped with the surveillanc

gncoded using blocks with the frame to create a feature xnatri
ith rows representing the frames. Likewise, spatio-terapo

cameras to monitor and observe the crowd activities. Howyeve€ature matrix is designed with objects indicating the rows
automated detection of anomalous crowd behaviour is still i SPatio-temporal features encode the time take by the aiobje

its infancy. Surveillance officials are overloaded with rile

in the scene. These feature matrices are then used to detect

of cameras to monitor anomalous behaviour using an arral!® @nomalous frames and anomalous objects. Elsewhere, dis
of screens that leads to inefficiency and high miss rates in iffiPuted hyperspherical clustering has been applied fonealy

addition to viewer fatigue experienced by them. Hence, an ajf€tection in large datasets [2]. In this work, drawing mation
tomated system is central to video surveillance as it bopshe 70M [2] @ new scheme to automatically identify anomalies

the operators to reduce the work overload errors and humi?@

errors. However, the detection of anomalous crowd behavio

is challenging in itself. As humans, we have the ability to

interpret the scene correctly using our biological visyatem,

s been proposed. This algorithm detects the anomalies by
irst clustering similar frames (in case of spatial featui@s
detecting anomalous frames) or objects (in case of spatial-
temporal features for detecting anomalous objects) and the

whereas developing such an equivalent engineering system §/@ssifying the clusters as normal or anomalous.

nontrivial.

In this work, six cameras were installed inside the corisdor

Anomalous crowd behaviour is a highly relevant issueof the Melbourne Cricket Ground (MCG). The data was

given the context of human population growth. With over 7collected on four different dates, when Australian Fodtbal
billion people currently on this Earth, congregation of few League (“footy”) matches were played at MCG totalling to
thousands for any popular social event in public places is approximately31.05 hours of data. The cameras were named
natural and common phenomenon. However, there will als€1-C6, and in this work, only C5 is used for validating
be anomalous events happening within the crowd. Anomalousur algorithm, which was determined based on the domain
events may include a person loitering about a place for tadlusuknowledge that best captures the crowd movements from a
amounts of time; people running and causing panic; the sizeisual surveillance perspective. The sample frames of the
of a group of people growing over time at a particular point ofcamera C5 are shown in Fig. 1. The Fig. 1 also shows the
entry or exit etc. Anomalous behaviors are those considereshask used for the analysis. The main contributions of this
to be unusual. When such behaviors are observed, there wgork are : (1) this is the first work in detecting the anomalies
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Fig. 1. Sample frames from MCG dataset for camera C5. (a)eseéth no objects, (b) scene with few people coming out froe gamin bowl and exiting,
(c) scene with many people moving around, standing andnexiaind (d) the mask used for detecting anomalies in thisovegejuence (Note: mask is used in
regions where people movements are observed and is of partioterest depending on the end applications).

@ (b)

using the spatial and spatio-temporal feature coding, @pd ( anomaly detection (detection of fighting events) by four de-
additionally, the hyperspherical clustering [2] is for tfiesst  scriptors: crowd kinetic energy (motion intensity), higtam
time being used in detecting the crowd behaviour anomaliesof motion directions, spatial distribution of motion intéty

and localization between two frames. Radial Basis Function

Il. LITERATURE REVIEW (RBF) kernel with 13-dimensional feature vector is input to

. . . . SVM for training and classification of abnormal events.
Anomaly detection mainly deals with the detection (lo- 9

cating) of events that are abnormal or unusual. In other Tzjakoset al. [14] proposed to detect the abnormal events
words, the behaviors of the people that are not in sync withhy detecting the motion vectors and then classifying them on
rest of the crowd are considered to be an anomalous crowgl jow-dimensional manifold using the Laplacian Eigenmaps.
events [3]. In [4], one can find a comprehensive study ofxy et al. [15] extracted the bag of Local Binary Patterns (LBP)
vision-based anomaly detection methods. Anomaly detectio from Three Orthogonal Planes (LBP-TOP) descriptor and
in general, operates on the temporal domain data to idethéfy applied the hierarchical Bayesian models to locate theoregi
events. To handle the emergency events in crowded scenariqs ynusual events. Zhaet al. [16] learned the Space-Time
Andradeet al. [5], [6], [7] proposed the spectral clustering of |nterest Points (STIPs) from videos using sliding windcwrse
optical flow as features. An automatic model was extracted byinusual events were detected using sparse coding based on th
fitting a Hidden Markov Model (HMM) for each of the video reconstructible query of the learned events. Thatlal. [17]
segments. Mehraet al. [8] proposed particle advection and ysed the blocks of Histogram of Optical Flow (HOOF) for
social force model computation to find the interacting ferce each frame and compared with the neighboring frames. Based
for every pixel. Then, the bag-of-words approach was agplie on the spatial and temporal distances, low-dimensionakemb

to classify the events as normal or abnormal. Jiengl. [9]  ding was found motivated by Laplacian Eigenmaps termed as
used the hierarchical clusterlng.to cluster the objectttajies Spatio-Temporal Laplacian Eigenmap (ST-LE). Based on the
governed by HMM, where the idea was to detect the unusuajimilarity of trajectories between the known event and s t
trajectories to identify unusual events. event in the embedding, the abnormal event was detected. A

In order to handle the unusual events, Adetral. [10] used Novelty classifier was trained to classify the abnormal é&ven
small regions of the scene to monitor the flow of objects using/® detect the anomalous motion patterns in groups (of pgople
optical flow. Based on the flow probability matrix, the unusua Anderssoret al. [18] proposed thel’ —means clustering and
events (running speeds) were recognized. Ghen [11] used semi-supervised HMM, where it was assumed that a reliable
the optical flow (Lucas-Kanade) to establish corresponelenc?€oPle detection algorithm exists. Cosgal. [19] proposed
between feature points. Later, the binned orientationptiéal ~ the region-based descriptor that characterizes both motio
flow about feature points were used to cluster the groupsnd appearance (in spatial and temporal directions) and the
Force-field model was applied to determine the dominan@nOmaly detection was posed as a matching problem.
forces and their directions. A transient appearance ofeforc Anomalv detection is widelv used in automatically de-
was considered to be an indication of the anomalous eveny, . y 1y us iy
Mahadevanet al. [3] used mixture of dynamic textures as ccung the unexpected behaviour in a set of data in many
representative features. Temporal anomaly was detected us applications [20], [21], [22], [23]. Several superviseddan
the Gaussian Mixture Model (GMM), whereas the spatialunSUperV'Sed algorithms have been proposed in the litera-

anomaly was detected using the discriminant saliency anHJre [24], [22], [25], [26]. In the case of the video analyt-

threshold. The net abnormality map was the combination of"S: uns_uperwsed_schgmes are required as the emergence of
temporal and spatial anomalies. suspecting behaviour in the crowded scene are highly non-

anticipatory and does not follow a set pattern, and hence
Wang and Miao [12] extracted the Kanade-Lucas-Tomashaving a pre-labelled data set of those cases are impriactica
(KLT) corners indicating the moving objects and optical flow in larger scenarios, especially crowds. The aforementione
for tracking the feature points. Identical motion pattefmreen  ~ methods in the literature either use a supervised or semi-
different blocks were clustered to generate a model and wasupervised training to detect anomalous behaviour. Giasgte
classified as normal or abnormal based on the amount dfased anomaly detection algorithms, such as [27], [28]}, [29
deviation from the trained model. Liaet al. [13] proposed provides the means to detect such new anomalies in the data. |



this work, we utilise a computationally efficient hyperspbal (1) frame differencing, (2) motion estimation using theicgit
clustering based algorithm [2] for detecting unusual b&vav  flow approach, and (3) by modeling the background and then
in the crowd. subtracting the background model from the incoming frames.
These methods have several advantages and disadvantages.

I1l. A PPROACH Due to the complexity of the data being handled, in this work,

) o o . the GMM [31] is utilized for the background modeling. The
Due to the nature of video analytlgs_, itis hard to distinbuis background model is learned from the video scene when the

between normal and abnormal activities based on a set @freground objects were absent. The objects were thentddtec
rules. For instance, running is something most of us performyy syptracting the model from the incoming frames. Shadows
however when someone is running in the middle of a walkingyere handled using the texture-based method [32], which is

crowd, it becomes an abnormal event and there is a need to flag,gwn to have markedly improved results in the literature.
such an activity. As a result, supervised training may not be

the best solution for generalized performance. Consideire B
camera view, the detection of anomalies can be accomplished
at three different levels — spatial (within frame), temgdora  For tracking the recognized objects, Kalman filter [33] is
(across frames but restricted to single object) and spatiodsed. The motion model is given by:

temporal, which is a combination of the other two. Although

Tracking

spatio-temporal approach is the ultimate target, spatia a L0 At 0 x

temporal anomalies are quite critical in video surveilnc v 01 0 Atf |y LNO.Q) O
applications. For instance, an anomaly in the density of a L7100 10 s ’

crowd is very useful in planning alternative exit path stopt 00 0 1 J

in emergency situations. Likewise, an unruly person in the
crowd has to be tracked over certain amount of time to avoi&nd the measurement model is given by
injuries and causing discomfort to the other people. Crowd

density anomalies can be found using the spatial anomaly r
detection and the unruly person in the crowd can be found by Ip| 1 0 0 0]y N(O.R 5
detecting the temporal anomalies. In the case of large spwd yp| [0 1 0 O +N(0, ), @)
people usually move in clusters and the behaviour analysis g

must include spatial as well as temporal aspects for anamalo
crowd behaviour detection. Another advantage of the spatiowhere, the random variables; and v; correspond to the
temporal anomaly detection is that it enables the system tprocess noise and the measurement naigés the process
capture the true anomalies for a given period of time. noise covariance anf is the measurement noise covariance;
Due to the nature of human behaviour and its understantg’ andyj are the observed objects positions; object positions
Ing, categorizing an event as at_)nprmal _based on a set ssociations of the objects in different frames to handleks
predefined characteristic features is infeasible. Theegyshat from multiple objects
flags the unusual event amidst a set of usual event (majority '
presumed normal) is more useful for surveillance applicesti _ .
Further, the type of feature representation used for dagect C- Features extraction and representation
the anomalies affects the overall performance. In the sego In an unsupervised learning, the algorithm intends to sep-
scheme, the video obtained from the cameras are subject@fate the usual and unusual behaviour through an apprepriat
to preprocessing followed by foreground object detectidi'e  metric. Hence, choosing the correct features, encodingnseh
detected objects are then tracked using a Kalman filter ad thand the metric play a vital role. In this work, several featur
features representing behaviour are extracted using thel N0 have been extracted and a new way of coding the crowd
coding schemes. The feature vectors are then classified agomalies is defined. Spatial and spatio-temporal represen
normal and abnormal using the hyperspherical clusterifig [2 tations are used as features to demonstrate the detection of

The feature coding and anomaly detection are the two keynomalous behaviour. The details of the features and the
contributions of this paper in addition to the detection ofencoding scheme is given in this section.
abnormal crowd behaviour.

,¥). The Hungarian cost algorithm [34] is used for track

1) Spatial features: Gray level Co-occurrence Matrix
(GLCM) was extracted for each frame corresponding to the ob-
ject bounding box. Four types of statistical texture infation

Most CCTV cameras installed at large arenas produce lowwas utilized to extract spatial features. Contrast, cati@h,
to-medium quality frames and are usually not the best fit foenergy and homogeneity were extracted. These features have
automated video analysis unless some preprocessing is pdreen shown to be of statistical importance by Haralick [35].
formed. High-frequency noise is often critical to be idéat  Chan et al. [36] have used 12 texture features for people
and filtered. So this is accomplished by first converting thecounting application. Let/; denote a frame at timeé and
video frames to grayscale images. Then the grayscale imagés, y) denote the pixel locations in the frame giving rise to the
are filtered through Gaussian low-pass filter with= 0.5 and  notation of I, (x, y) for a frame. For each frame in the video
a block size of5 x 5 to remove the high-frequency spatial sequence, four features consisting of texture informatiere
noise. The choice of the filter is based on the crowd monitprin extracted. Letn be the number of rows and be the number
work presented in [30]. Objects of interest can be detected iof columns of the video frame. The input frame is divided into
three ways (categorized based on computational compjexityb,. x b. blocks, wheré,.,b. € R and1 < b, < m,1 < b, < n.

A. Preprocessing and Object Detection



1 2 3 4 & 5 6
>0 O Object 1
7 8 9 10 1 12 O Object 2
13 14 15 16 17 18 —> Path direction
Video D‘KO@
frame 7
19 |20 21 22 |23 24
ota| ptr—ot]
25& 26 \2? 28 |20 |30
sQ
v
Blocks
Objects [ 1 2 3 4 5 6 .everenne 18 19 20 21 22 23 24 25 26 27 28 29 30
O J|oJo]o]i1]2]3s olololoflo]lofo|lo]o|lo]ofo]oO
O |o]Jo|o]Jofo]o 1716|432 ]ofs]ol5]0]9]o0

Spatio-temporal feature matrix

Fig. 2. Depiction of spatio-temporal feature coding for taelgiects. There are two objects (1 and 2) that have traced padh in the scene. Object 1 enters
and exists the scene relatively quickly. Object 2 loiteisuad at a place for more time compared to Object 1. The reéttteocoding mechanism described in
Section I1I-C2 for the two objects are shown in the featurd@rimaObject 2 enters the block 18 and then traces the rowtehe blocks 23, 22, 21, 27, 20, 19,
25 and 26 before exiting. The feature coding using the preggaszheme will be 1 for 18th block, 2 for 23rd block, 3 for 22ridck and so on, in the order

the object 2 traverses through the blocks.

The edges of the frame, where the remainder of the blockebject, the block corresponding to the initial location iftaame

are incomplete, were padded with zeros. A feature matrix i$s assigned with numerical value If the object remains in
created with rows equal to the number of frames and columnthe same block, then other blocks are not updated and value
equal to the total number of bloc%§ + R, X &+Rn, where  of the block in which it is present remains the same. When
R,, and R,, are the remainder blocks added whenandn  the object moves to another block, the numerical value of the
are not multiples ob, andb.. Depending on the location of block that it takes is the incremented value from the previou
the object (based on centroid), the block in which the objecblock for the same object. This process continues for all the
is residing is updated with four texture features. For a give objects. In essence, blocks are coded with values startmg f
bounding box region, the texture features were computed ak and is incremented when it moves to another block. Fig. 2
given by [35]: shows an example of coding two objects in the video scene.

IV. HYPERSPHERICAL CLUSTER BASED BEHAVIOUR
Contrast = > p(i,j)|i — j|? (3) ANOMALY DETECTION
i,J

The proposed scheme performs anomaly detection itera-
Correlation = Zp(i,j)(i —pui)(§ — png) (4) tively on smaller time windows thereby effectively caphgi
i, the anomalous crowd behaviour more precisely depending
- N on the situation. In this work, we propose to use a recent
Energy Zp(l’j) ) development in anomaly detection applied for environnlenta
- . monitoring [2] for detecting behaviour anomalies at alletar
Homogeneity p(@j J) _ (6) levels. The method involves three main components: (1) dfixe
o 1+ 1]i—j] width clustering applied on the motion data, (2) merging of
closely placed clusters of crowd behaviour, and (c) identifi
wherep is the un-normalized distribution of the measuie, cation of anomalous clusters using tf& nearest neighbor
andj correspond to the pixel locations. (K-NN) approach. This scheme helps us to find out similar

. ] . activities within the data in addition to identifying the usual
2) Satio-temporal features. Spatio-temporal features pro- crowd events.

posed are one of the most basic features that encode the loca-

tion of an object with respect to time. The output of the Katma The schematic of the flow is shown in Fig. 3 and the
filter is critical in this phase as the correct object idea#ifions  details of the algorithm is briefly presented here. The ack
are required for the encoding process. First, the videodeam are obtained from the previous processes. Once the tracks
are divided into blocks as described previously. Then, forare obtained, they are appropriately coded as discussed in
each object in the video sequence, a feature representati@ection 11I-C. Fig. 3 provides the schematic for temporal
consisting of spatio-temporal information is extractesk. @&ach  anomaly detection. For illustration, different tracks asmed
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Fig. 3. Schematic of anomaly detection algorithm used fdrab®ur analysis. T1 to T8 are tracks. C1-C6 are clustergeting anomaly is shown in red
(dotted track). X and Y axes are some attributes shown folagipg the concept.

from T1 to T8 with T7 and T8 being the loitering anomalies will be standing in the scene for a long time (5 minutes)
within the field of view. The remaining tracks are entry andwhile others are exiting and some others loitering. Theildeta
exit paths of the scene at some given point. As a first step, af the dataset are provided in Table I. The vision algorithms
fixed width clustering [37] is used for representing the &mi  were implemented in MATLAB 8.0 (R2012b) and the anomaly
tracks. This results in hyperspherical clusters with fixadtiv ~ detection in Java on Windows 7 (64 bit) comprising of an
w. For instance, as shown in the figure, tracks similar to Tiintel® i7 — 2600 CPU running at 3.4 GHz witdk GB RAM.
and T2 form cluster C4; T3 and T4 form C3; T5 forms C1; The system also included 512 MB ATl RadeorHD 5450

T6 forms C2; T7 and T8 form C5. As a second step, similarGraphics card.

clusters are merged based on the distance between cluéters.

the inter-cluster (centroid) distance is less than thestiwkl TABLE |.  DATASET DETAILS COLLECTED ATMELBOURNE CRICKET
7, the clusters are merged. In the Fig. 3, C1 and C2 clusters GROUND (MCG).

are merged together to form C6. Finallyanearest neighbor Date Camera| Length (hhimm:ss)

(/£-NN) based algorithm is used to find the anomalous cluster c1c2 1803

based on the average inter-cluster distances. If the awerag 16-September-2011——- 1601

inte_r c_:Iuster dista_nce is more _thapn number of standa_rd 23-September2011 C2-C6 2201

deV|at|on_s of the mter—clu_ster distance from the meanrinte 24-September-2011 C2-C6 1401

cluster distance, a cluster is declared as anomalous. Tadsde 01-October-2011 | C2-Cé 5:15:01

of the algorithm and the calculation of inter-cluster dista
is covered in detail in [2]. In the Fig. 3, the result of thée
NN is shown as C5, referring to the tracks T7 and T8. Thea Performance
parameterov influences the number of clusters produced; the
parameter) determines the sensitivity of the anomaly detector ~ The results for the spatial and spatio-temporal features
and is usually selected from a set of valugs= {1,2,3}. have been tabulated in Table Il and Table Ill respectively.
The K value of the K-NN scheme can be selected as aln Table II, the anomalous frames based on spatial features
given percentage of the number of clusters produced in thécontrast and homogeneity) are derived from GLCM. The
system [2]. frames were divided intd6 x 16 and 32 x 32 blocks. For
a particular frame, if an object was present, then the centra
V. RESULTS AND DISCUSSION and homogeneity were computed and coded as spatial features

into the feature matrix. The feature matrix consisted offea

_ Keeping the flow of the paper consistent, in this section, We,q 1y and blocks as columns. The cluster widthvas set
discuss the dataset used followed by the results of thewario ;¢ merging threshold- = 1w, the number ofK nearest
1 - 2 1

encoding schemes _proposed. The University of Minnesot eighbors equal td and standard deviations — 1 for all
(UMN) dataset [38] is a benchmark dataset used for unusu%e spatial features and block sizes. It is evident from the
crowd activity recognition. In the UMN dataset, events véher topia |1 that for different block sizes and different featsy
people are walking are considered as normal and running,o 2nomalous frames change.

events are considered as abnormal. Our objective is not to
detect events based on walking and running, but inclusive Table Ill provides the anomalous objects detected by
of all possible crowd events. The dataset used in this workollowing the spatio-temporal coding scheme. Again briefly
was collected at the Melbourne Cricket Ground (MCG). Fivementioning, the frames were divided into different blockesi
cameras were installed in the selected areas of the coaittbr as tabulated in the Table Ill. The feature input matrix cetes
another camera at the gaming bowl. The cameras were namedl object identification numbers as corresponding rows and
C1 to C6. A total of31.05 hours of data was collected 25 blocks as the columns. If an object enters (centroid loodtio
frames per second. For this particular work, as a novel studg particular block, then that particular block is increnseht

in this area, only C5 (23-September-2011) was used, which iby value one and if the object stays in the same block,
of length 22 minutes and 1 second. In this view, people coméhe value for that block is unchanged. More specifically, the
out to corridor after watching a game. Some of the peoplenaximum value of the entire row matrix is computed and



TABLE II.

T HE TABLE LISTS THE ANOMALOUS FRAMES DETECTED BY
HYPERPHYSICAL CLUSTERING(DESCRIBED IN SECTIONIV) USING THE

SPATIAL FEATURES(CONTRAST AND HOMOGENEITY) EXTRACTED BY
COMPUTINGGLCM FOR EACH OF THE FRAME THE FRAMES WERE

DIVIDED INTO 16 X 16 AND 32 X 32. TOTAL NUMBER OF FRAMES IN THE

VIDEO SEQUENCE WERE31375

Spatial features

29976 — 30000

11201 — 11225
17601 — 17625
18101 — 18125
18251 — 18275
18451 — 18475
18801 — 18825
19401 — 19425
22999 — 23000
23501 — 23525
23626 — 23650
29976 — 30000

Contrast Homogeneity
16 x 16 32 x 32 16 x 16 32 x 32
2276 — 2300 2276 — 2300 9468 — 9475 12800
11201 — 11225 5557 — 5575 16526 — 16550 | 28467 — 28475
17601 — 17625 5726 — 5750 26851 — 26875 | 30276 — 30300
18101 — 18125 5851 — 5873 27751 — 27775 | 31026 — 31050
18251 — 18275 5901 — 5925
22999 — 23000 6001 — 6025

the resulting value is incremented by one. If the object is

In the case of detection of anomalous frames, the spatial
features not only included contrast and homogeneity, =d al
correlation and energy. Furthermore, the block sizes dedu
8 x 8 for each of the features. However, there were no anoma-
lous frames detected by the hyperphysical clustering dlgor
The reason behind this phenomenon can be explained in terms
of the spatial features. GLCM is calculated by measuring
the frequency of occurrence of pixel (grayscaleyhich is
horizontally adjoining toj. This provides us a gray tone co-
occurrence matrix. The Contrast provides us a measure of in-
tensity difference, li—j|? between a pixel and its neighbor
that is being measured using the Euclidean distance fattore
by the normalized joint probability functiop(i, j) (derived
from GLCM). Likewise, correlation provides a measure of
correlation of a pixel with its neighbor; energy is simplyeth
sum of squared values of normalized joint probability mxatri
elementsp(i, j); and the homogeneity captures the degree of
closeness of the distribution of the GLCM matrix elements
with respect to diagonal elements of the GLCM matrix. Due
to the nature of these measures, the feature input matmig usi
correlation and energy resulted such that the hypersieric
clustering algorithm was unable to detect the anomalous
frames. In other words, the feature input matrix was idetic
(or closely similar) for all the frames. Thus, the hypergjda
clustering was unable to detect anomalies. Fig. 4 shows the
sample anomalous frames representing the Table II.

In the case of detection of anomalous objects, due to the

Jature of the spatio-temporal features proposed, the godin
mechanism resulted in detection of loitering objects in the
video scene. Loitering objects are those that spend signific

Amount of time in the scene (not necessarily at a single ¥pace

revisiting the same block, the values are left unchanged. F
spatio-temporal features, the clustering parameters sedras:
w =5, 7= 2w, K-NN= 3 and¢y = 1. From the Table III,
it is clear that the encoding scheme generates a featuréxmat

that enables to detect different anomalous objects foedfft
block sizes.

TABLE IIl. T HE TABLE LISTS THE ANOMALOUS OBJECT
IDENTIFICATION NUMBER DETECTED BY HYPERPHYSICAL CLUSTERNG
(DESCRIBED IN SECTIONIV) USING THE SPATIGTEMPORAL FEATURES

CODED FOR EACH OF THE FRAME THE FRAMES WERE DIVIDED INTO
8 X 8,16 x 16, 32 x 32 AND 48 x 64. TOTAL NUMBER OF UNIQUE
OBJECTS IN THE VIDEO WEREL163. THE UNIQUE OBJECT IDENTIFICATION
NUMBERS START FROML.

The identified objects were verified using the ground truth
generated by annotating the video files. All the objectsaete

as anomalous were loitering in the scene compared to the
other objects in the scene (both spatially and temporally).
In the feature matrix, the maximum value of the row vector
corresponding to each object increases for anomaloustsbjec
compared to other usual objects. Additionally, the feature
vector length for the anomalous object increases as the time
spent by the loitering object changes its spatial locatiah b
remain within the scene, the values of the columns (reptesen

Spatio-temporal features ing blocks) increases for the same object. This makes coding
8x8 | 16 x16 | 32x32 | 48 x 64 efficient for hyperspherical clustering to detect theseectsj
oo o o o as anomalous. This is a significant result, since, an efficien
638 % 336 243 coding scheme can effectively uncover the underlying crowd
677 163 366 541 dynamics, and in particular, the pedestrian loitering gighme
780 336 459 783 texture features.
783 677 503 784
784 780 541 911 The selection of the block sizes affects the detection of
222 ;gi ;gi 1901295 anomalous frames and/or anomalous objects. For instamce, i
911 830 813 1046 the case of spatlo—_temporal approach, the larger bIoc_k size
921 831 830 1072 results in less coding (the maximum value for a particular
922 911 831 1086 object is small) and hence the number of detected anomalous
gg; g;i gi; 1110 objects are less. This is not necessarily true in all thescdre
1005 922 921 Table Ill, 16 x 16 yielded the maximum number of anomalous
1025 082 1072 objects as opposed tox 8. However, as expected, t3e x 32
1086 1025 1109 and 48 x 64 block sizes provided less number of anomalous
i(l)g; 1822 1110 objects, 18 and 13 respectivel/x 8 produced21 anomalous
1110 1087 objects, whereas6 x 16 resulted in23. Additionally, some
1136 1109 of the the anomalous object88g, 784 and911) detected are
1110 common although the block sizes are different. The calmriat
1136 of feature matrix for8 x 8 is computationally intensive as



(c) Frame number: 23000

(g) Frame number: 5726 (h) Frame number: 23626

(j) Frame number: 5557 (k) Frame number: 26875 () Frame number: 27775

(m) Frame number: 12800 (n) Frame number: 28470 (o) Frame number: 30276 (p) Frame number: 31050

Fig. 4. The figures show the frames detected as anomalousnablk defined in Fig. 1 is used. Anomalous frames are orderéullass: Contrast {6 x 16)
(a)—(d); Contrast32 x 32) (e)—(h); Homogeneity 16 x 16); (i)—(I), and Homogeneity 32 x 32) : (m)—(p). The frame numbers are representative frames
from Table II. The black polygonal region in the figures sading the objects are due the mask used in this view of cafi@@amask is provided in Fig. 1-(d).
Only the interior (white region) in the mask is considered doalysis.

compared to the others. We encountered memory problems VI. CONCLUSION
and were unable to detect the anomalous frames (using the

spatial features) foB x 8. For the same reason, this has not

been reported in Table II.

The advantage of the co-occurrence matrix is that the Analysis of crowd behaviour in public places is an indis-
spatial inter-relationships of the gray tones remain iirdr pensable tool for video surveillance. Detection of aut@dat
under transformation. On the other hand, the co-occurrencanomalous crowd behaviour is a critical problem with the in-
matrix loses its strength in capturing the shape infornmatib  creased human population and surveillance applicatiartkis
the objects [35]. There is a need for more research on how teork, the anomalous frames and objects in a video were de-
effectively code the spatial and spatio-temporal featamed tected using the new encoding schemes for spatial and spatio
the optimal block sizes. Furthermore, the parameters chosdéemporal features. Spatial features revealed the anomalou
for the hyperspherical clustering were based on empiricaframes by using contrast and homogeneity measures. Lrgiteri
knowledge of the video and the clustering algorithm. Estimabehaviour of the people were detected as anomalous objects
tion of optimal parameters for clustering requires addiio using the spatio-temporal features. Hyperspherical etirgi
work in this direction. algorithm was used to detect anomalies with excellent t&sul
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