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Abstract—Analysis of crowd behaviour in public places is an
indispensable tool for video surveillance. Automated detection
of anomalous crowd behaviour is a critical problem with the
increase in human population. Anomalous events may include
a person loitering about a place for unusual amounts of time;
people running and causing panic; the size of a group of people
growing over time etc. In this work, to detect anomalous events
and objects, two types of feature coding has been proposed:
spatial features and spatio-temporal features. Spatial features
comprises of contrast, correlation, energy and homogeneity, which
are derived from Gray Level Co-occurrence Matrix (GLCM).
Spatio-temporal feature includes the time spent by an object
at different locations in the scene. Hyperspherical clustering
has been employed to detect the anomalies. Spatial featuresre-
vealed the anomalous frames by using contrast and homogeneity
measures. Loitering behaviour of the people were detected as
anomalous objects using the spatio-temporal coding.

I. I NTRODUCTION

Analysis of crowd behaviour in public places is an in-
dispensable tool for video surveillance. Automated analysis
of crowd behaviour has the potential to detect and alert the
anomalous crowd behaviour in almost real-time. Most of
the public places such as stadia, bus stops, movie theaters,
shopping malls are nowadays equipped with the surveillance
cameras to monitor and observe the crowd activities. However,
automated detection of anomalous crowd behaviour is still in
its infancy. Surveillance officials are overloaded with plenty
of cameras to monitor anomalous behaviour using an array
of screens that leads to inefficiency and high miss rates in in
addition to viewer fatigue experienced by them. Hence, an au-
tomated system is central to video surveillance as it both helps
the operators to reduce the work overload errors and human
errors. However, the detection of anomalous crowd behaviour
is challenging in itself. As humans, we have the ability to
interpret the scene correctly using our biological visual system,
whereas developing such an equivalent engineering system is
nontrivial.

Anomalous crowd behaviour is a highly relevant issue
given the context of human population growth. With over 7
billion people currently on this Earth, congregation of few
thousands for any popular social event in public places is a
natural and common phenomenon. However, there will also
be anomalous events happening within the crowd. Anomalous
events may include a person loitering about a place for unusual
amounts of time; people running and causing panic; the size
of a group of people growing over time at a particular point of
entry or exit etc. Anomalous behaviors are those considered
to be unusual. When such behaviors are observed, there is

a need to address the issue immediately. Automated analysis
provides an unbiased interpretation of the scene, which is
regarded as an important tool in making the right decisions
by the event managers. For instance, consider a stadium like
Melbourne Cricket Ground (MCG), which can accommodate
nearly 100, 000 spectators for any sporting event. If there is
any unforeseen circumstance, where people panic and cause a
commotion, the stadium management would face a daunting
task in calming the people down or even attending to the
people. To avoid any untoward issues within the spaces of the
stadium, continuous monitoring of the behaviour of the people
moving within the limits of stadium is of utmost importance.

According to Barnett and Lewis [1], an anomaly is defined
as “an observation (or subset of observations), which appears
to be inconsistent with the remainder of that set of data”. In
this work, to detect anomalous frames and objects, two typesof
feature coding been have been proposed keeping the newly de-
veloped clustering scheme: (1) the spatial features comprising
of contrast, correlation, energy and homogeneity, and (2) the
spatio-temporal features. Spatial feature are derived from Gray
level Co-occurrence Matrix (GLCM). These features are then
encoded using blocks with the frame to create a feature matrix
with rows representing the frames. Likewise, spatio-temporal
feature matrix is designed with objects indicating the rows.
Spatio-temporal features encode the time take by the an object
in the scene. These feature matrices are then used to detect
the anomalous frames and anomalous objects. Elsewhere, dis-
tributed hyperspherical clustering has been applied for anomaly
detection in large datasets [2]. In this work, drawing motivation
from [2] a new scheme to automatically identify anomalies
has been proposed. This algorithm detects the anomalies by
first clustering similar frames (in case of spatial featuresfor
detecting anomalous frames) or objects (in case of spatial-
temporal features for detecting anomalous objects) and then
classifying the clusters as normal or anomalous.

In this work, six cameras were installed inside the corridors
of the Melbourne Cricket Ground (MCG). The data was
collected on four different dates, when Australian Football
League (“footy”) matches were played at MCG totalling to
approximately31.05 hours of data. The cameras were named
C1-C6, and in this work, only C5 is used for validating
our algorithm, which was determined based on the domain
knowledge that best captures the crowd movements from a
visual surveillance perspective. The sample frames of the
camera C5 are shown in Fig. 1. The Fig. 1 also shows the
mask used for the analysis. The main contributions of this
work are : (1) this is the first work in detecting the anomalies
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Fig. 1. Sample frames from MCG dataset for camera C5. (a) scene with no objects, (b) scene with few people coming out from the gamin bowl and exiting,
(c) scene with many people moving around, standing and exiting, and (d) the mask used for detecting anomalies in this video sequence (Note: mask is used in
regions where people movements are observed and is of particular interest depending on the end applications).

using the spatial and spatio-temporal feature coding, and (2)
additionally, the hyperspherical clustering [2] is for thefirst
time being used in detecting the crowd behaviour anomalies.

II. L ITERATURE REVIEW

Anomaly detection mainly deals with the detection (lo-
cating) of events that are abnormal or unusual. In other
words, the behaviors of the people that are not in sync with
rest of the crowd are considered to be an anomalous crowd
events [3]. In [4], one can find a comprehensive study of
vision-based anomaly detection methods. Anomaly detection,
in general, operates on the temporal domain data to identifythe
events. To handle the emergency events in crowded scenarios,
Andradeet al. [5], [6], [7] proposed the spectral clustering of
optical flow as features. An automatic model was extracted by
fitting a Hidden Markov Model (HMM) for each of the video
segments. Mehranet al. [8] proposed particle advection and
social force model computation to find the interacting forces
for every pixel. Then, the bag-of-words approach was applied
to classify the events as normal or abnormal. Jianget al. [9]
used the hierarchical clustering to cluster the object trajectories
governed by HMM, where the idea was to detect the unusual
trajectories to identify unusual events.

In order to handle the unusual events, Adamet al. [10] used
small regions of the scene to monitor the flow of objects using
optical flow. Based on the flow probability matrix, the unusual
events (running speeds) were recognized. Chenet al. [11] used
the optical flow (Lucas-Kanade) to establish correspondence
between feature points. Later, the binned orientations of optical
flow about feature points were used to cluster the groups.
Force-field model was applied to determine the dominant
forces and their directions. A transient appearance of force
was considered to be an indication of the anomalous event.
Mahadevanet al. [3] used mixture of dynamic textures as
representative features. Temporal anomaly was detected using
the Gaussian Mixture Model (GMM), whereas the spatial
anomaly was detected using the discriminant saliency and
threshold. The net abnormality map was the combination of
temporal and spatial anomalies.

Wang and Miao [12] extracted the Kanade-Lucas-Tomasi
(KLT) corners indicating the moving objects and optical flow
for tracking the feature points. Identical motion patternsfrom
different blocks were clustered to generate a model and was
classified as normal or abnormal based on the amount of
deviation from the trained model. Liaoet al. [13] proposed

anomaly detection (detection of fighting events) by four de-
scriptors: crowd kinetic energy (motion intensity), histogram
of motion directions, spatial distribution of motion intensity
and localization between two frames. Radial Basis Function
(RBF) kernel with 13-dimensional feature vector is input to
SVM for training and classification of abnormal events.

Tziakoset al. [14] proposed to detect the abnormal events
by detecting the motion vectors and then classifying them on
a low-dimensional manifold using the Laplacian Eigenmaps.
Xu et al. [15] extracted the bag of Local Binary Patterns (LBP)
from Three Orthogonal Planes (LBP-TOP) descriptor and
applied the hierarchical Bayesian models to locate the regions
of unusual events. Zhaoet al. [16] learned the Space-Time
Interest Points (STIPs) from videos using sliding windows.The
unusual events were detected using sparse coding based on the
reconstructible query of the learned events. Thidaet al. [17]
used the blocks of Histogram of Optical Flow (HOOF) for
each frame and compared with the neighboring frames. Based
on the spatial and temporal distances, low-dimensional embed-
ding was found motivated by Laplacian Eigenmaps termed as
Spatio-Temporal Laplacian Eigenmap (ST-LE). Based on the
similarity of trajectories between the known event and the test
event in the embedding, the abnormal event was detected. A
Novelty classifier was trained to classify the abnormal events.
To detect the anomalous motion patterns in groups (of people),
Anderssonet al. [18] proposed theK−means clustering and
semi-supervised HMM, where it was assumed that a reliable
people detection algorithm exists. Conget al. [19] proposed
the region-based descriptor that characterizes both motion
and appearance (in spatial and temporal directions) and the
anomaly detection was posed as a matching problem.

Anomaly detection is widely used in automatically de-
tecting the unexpected behaviour in a set of data in many
applications [20], [21], [22], [23]. Several supervised and
unsupervised algorithms have been proposed in the litera-
ture [24], [22], [25], [26]. In the case of the video analyt-
ics, unsupervised schemes are required as the emergence of
suspecting behaviour in the crowded scene are highly non-
anticipatory and does not follow a set pattern, and hence
having a pre-labelled data set of those cases are impractical
in larger scenarios, especially crowds. The aforementioned
methods in the literature either use a supervised or semi-
supervised training to detect anomalous behaviour. Clustering
based anomaly detection algorithms, such as [27], [28], [29],
provides the means to detect such new anomalies in the data. In



this work, we utilise a computationally efficient hyperspherical
clustering based algorithm [2] for detecting unusual behaviors
in the crowd.

III. A PPROACH

Due to the nature of video analytics, it is hard to distinguish
between normal and abnormal activities based on a set of
rules. For instance, running is something most of us perform,
however when someone is running in the middle of a walking
crowd, it becomes an abnormal event and there is a need to flag
such an activity. As a result, supervised training may not be
the best solution for generalized performance. Considering one
camera view, the detection of anomalies can be accomplished
at three different levels — spatial (within frame), temporal
(across frames but restricted to single object) and spatio-
temporal, which is a combination of the other two. Although
spatio-temporal approach is the ultimate target, spatial and
temporal anomalies are quite critical in video surveillance
applications. For instance, an anomaly in the density of a
crowd is very useful in planning alternative exit path strategy
in emergency situations. Likewise, an unruly person in the
crowd has to be tracked over certain amount of time to avoid
injuries and causing discomfort to the other people. Crowd
density anomalies can be found using the spatial anomaly
detection and the unruly person in the crowd can be found by
detecting the temporal anomalies. In the case of large crowds,
people usually move in clusters and the behaviour analysis
must include spatial as well as temporal aspects for anomalous
crowd behaviour detection. Another advantage of the spatio-
temporal anomaly detection is that it enables the system to
capture the true anomalies for a given period of time.

Due to the nature of human behaviour and its understand-
ing, categorizing an event as abnormal based on a set of
predefined characteristic features is infeasible. The system that
flags the unusual event amidst a set of usual event (majority
presumed normal) is more useful for surveillance applications.
Further, the type of feature representation used for detecting
the anomalies affects the overall performance. In the proposed
scheme, the video obtained from the cameras are subjected
to preprocessing followed by foreground object detection.The
detected objects are then tracked using a Kalman filter and the
features representing behaviour are extracted using the novel
coding schemes. The feature vectors are then classified as
normal and abnormal using the hyperspherical clustering [2].
The feature coding and anomaly detection are the two key
contributions of this paper in addition to the detection of
abnormal crowd behaviour.

A. Preprocessing and Object Detection

Most CCTV cameras installed at large arenas produce low-
to-medium quality frames and are usually not the best fit for
automated video analysis unless some preprocessing is per-
formed. High-frequency noise is often critical to be identified
and filtered. So this is accomplished by first converting the
video frames to grayscale images. Then the grayscale images
are filtered through Gaussian low-pass filter withσ = 0.5 and
a block size of5 × 5 to remove the high-frequency spatial
noise. The choice of the filter is based on the crowd monitoring
work presented in [30]. Objects of interest can be detected in
three ways (categorized based on computational complexity):

(1) frame differencing, (2) motion estimation using the optical
flow approach, and (3) by modeling the background and then
subtracting the background model from the incoming frames.
These methods have several advantages and disadvantages.
Due to the complexity of the data being handled, in this work,
the GMM [31] is utilized for the background modeling. The
background model is learned from the video scene when the
foreground objects were absent. The objects were then detected
by subtracting the model from the incoming frames. Shadows
were handled using the texture-based method [32], which is
shown to have markedly improved results in the literature.

B. Tracking

For tracking the recognized objects, Kalman filter [33] is
used. The motion model is given by:
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where, the random variableswt and vt correspond to the
process noise and the measurement noise;Q is the process
noise covariance andR is the measurement noise covariance;
xp andyp are the observed objects positions; object positions
(x, y). The Hungarian cost algorithm [34] is used for track
associations of the objects in different frames to handle tracks
from multiple objects.

C. Features extraction and representation

In an unsupervised learning, the algorithm intends to sep-
arate the usual and unusual behaviour through an appropriate
metric. Hence, choosing the correct features, encoding scheme
and the metric play a vital role. In this work, several features
have been extracted and a new way of coding the crowd
anomalies is defined. Spatial and spatio-temporal represen-
tations are used as features to demonstrate the detection of
anomalous behaviour. The details of the features and the
encoding scheme is given in this section.

1) Spatial features: Gray level Co-occurrence Matrix
(GLCM) was extracted for each frame corresponding to the ob-
ject bounding box. Four types of statistical texture information
was utilized to extract spatial features. Contrast, correlation,
energy and homogeneity were extracted. These features have
been shown to be of statistical importance by Haralick [35].
Chan et al. [36] have used 12 texture features for people
counting application. LetIt denote a frame at timet and
(x, y) denote the pixel locations in the frame giving rise to the
notation ofIt(x, y) for a frame. For each frame in the video
sequence, four features consisting of texture informationwere
extracted. Letm be the number of rows andn be the number
of columns of the video frame. The input frame is divided into
br× bc blocks, wherebr, bc ∈ R and1 < br ≤ m, 1 < bc ≤ n.
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Fig. 2. Depiction of spatio-temporal feature coding for twoobjects. There are two objects (1 and 2) that have traced their path in the scene. Object 1 enters
and exists the scene relatively quickly. Object 2 loiters around at a place for more time compared to Object 1. The result of the coding mechanism described in
Section III-C2 for the two objects are shown in the feature matrix. Object 2 enters the block 18 and then traces the route via the blocks 23, 22, 21, 27, 20, 19,
25 and 26 before exiting. The feature coding using the proposed scheme will be 1 for 18th block, 2 for 23rd block, 3 for 22nd block and so on, in the order
the object 2 traverses through the blocks.

The edges of the frame, where the remainder of the blocks
are incomplete, were padded with zeros. A feature matrix is
created with rows equal to the number of frames and columns
equal to the total number of blocksm

br
+Rm× n

bc
+Rn, where

Rm andRn are the remainder blocks added whenm andn
are not multiples ofbr and bc. Depending on the location of
the object (based on centroid), the block in which the object
is residing is updated with four texture features. For a given
bounding box region, the texture features were computed as
given by [35]:

Contrast =
∑

i,j

p(i, j)|i− j|2 (3)

Correlation =
∑

i,j

p(i, j)(i− µi)(j − µj) (4)

Energy =
∑

i,j

p(i, j)2 (5)

Homogeneity =
∑

i,j

p(i, j)

1 + |i− j|
(6)

where p is the un-normalized distribution of the measure,i
andj correspond to the pixel locations.

2) Spatio-temporal features: Spatio-temporal features pro-
posed are one of the most basic features that encode the loca-
tion of an object with respect to time. The output of the Kalman
filter is critical in this phase as the correct object identifications
are required for the encoding process. First, the video frames
are divided into blocks as described previously. Then, for
each object in the video sequence, a feature representation
consisting of spatio-temporal information is extracted. For each

object, the block corresponding to the initial location in aframe
is assigned with numerical value1. If the object remains in
the same block, then other blocks are not updated and value
of the block in which it is present remains the same. When
the object moves to another block, the numerical value of the
block that it takes is the incremented value from the previous
block for the same object. This process continues for all the
objects. In essence, blocks are coded with values starting from
1 and is incremented when it moves to another block. Fig. 2
shows an example of coding two objects in the video scene.

IV. H YPERSPHERICAL CLUSTER BASED BEHAVIOUR
ANOMALY DETECTION

The proposed scheme performs anomaly detection itera-
tively on smaller time windows thereby effectively capturing
the anomalous crowd behaviour more precisely depending
on the situation. In this work, we propose to use a recent
development in anomaly detection applied for environmental
monitoring [2] for detecting behaviour anomalies at all three
levels. The method involves three main components: (1) a fixed
width clustering applied on the motion data, (2) merging of
closely placed clusters of crowd behaviour, and (c) identifi-
cation of anomalous clusters using theK nearest neighbor
(K-NN) approach. This scheme helps us to find out similar
activities within the data in addition to identifying the unusual
crowd events.

The schematic of the flow is shown in Fig. 3 and the
details of the algorithm is briefly presented here. The tracks
are obtained from the previous processes. Once the tracks
are obtained, they are appropriately coded as discussed in
Section III-C. Fig. 3 provides the schematic for temporal
anomaly detection. For illustration, different tracks arenamed
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Fig. 3. Schematic of anomaly detection algorithm used for behaviour analysis. T1 to T8 are tracks. C1-C6 are clusters. Loitering anomaly is shown in red
(dotted track). X and Y axes are some attributes shown for explaining the concept.

from T1 to T8 with T7 and T8 being the loitering anomalies
within the field of view. The remaining tracks are entry and
exit paths of the scene at some given point. As a first step, a
fixed width clustering [37] is used for representing the similar
tracks. This results in hyperspherical clusters with fixed width
w. For instance, as shown in the figure, tracks similar to T1
and T2 form cluster C4; T3 and T4 form C3; T5 forms C1;
T6 forms C2; T7 and T8 form C5. As a second step, similar
clusters are merged based on the distance between clusters.If
the inter-cluster (centroid) distance is less than the threshold
τ , the clusters are merged. In the Fig. 3, C1 and C2 clusters
are merged together to form C6. Finally, aK nearest neighbor
(K-NN) based algorithm is used to find the anomalous cluster
based on the average inter-cluster distances. If the average
inter cluster distance is more thanψ number of standard
deviations of the inter-cluster distance from the mean inter-
cluster distance, a cluster is declared as anomalous. The details
of the algorithm and the calculation of inter-cluster distance
is covered in detail in [2]. In the Fig. 3, the result of theK-
NN is shown as C5, referring to the tracks T7 and T8. The
parameterw influences the number of clusters produced; the
parameterψ determines the sensitivity of the anomaly detector
and is usually selected from a set of valuesS = {1, 2, 3}.
The K value of theK-NN scheme can be selected as a
given percentage of the number of clusters produced in the
system [2].

V. RESULTS AND DISCUSSION

Keeping the flow of the paper consistent, in this section, we
discuss the dataset used followed by the results of the various
encoding schemes proposed. The University of Minnesota
(UMN) dataset [38] is a benchmark dataset used for unusual
crowd activity recognition. In the UMN dataset, events where
people are walking are considered as normal and running
events are considered as abnormal. Our objective is not to
detect events based on walking and running, but inclusive
of all possible crowd events. The dataset used in this work
was collected at the Melbourne Cricket Ground (MCG). Five
cameras were installed in the selected areas of the corridorand
another camera at the gaming bowl. The cameras were named
C1 to C6. A total of31.05 hours of data was collected at25
frames per second. For this particular work, as a novel study
in this area, only C5 (23-September-2011) was used, which is
of length 22 minutes and 1 second. In this view, people come
out to corridor after watching a game. Some of the people

will be standing in the scene for a long time (5 minutes)
while others are exiting and some others loitering. The details
of the dataset are provided in Table I. The vision algorithms
were implemented in MATLAB 8.0 (R2012b) and the anomaly
detection in Java on Windows 7 (64 bit) comprising of an
Intel R© i7− 2600 CPU running at 3.4 GHz with4 GB RAM.
The system also included 512 MB ATI Radeon

TM
HD 5450

Graphics card.

TABLE I. DATASET DETAILS COLLECTED AT MELBOURNE CRICKET

GROUND (MCG).

Date Camera Length (hh:mm:ss)

16-September-2011
C1-C2 18:03

C3-C6 18:01

23-September-2011 C2-C6 22:01

24-September-2011 C2-C6 14:01

01-October-2011 C2-C6 5:15:01

A. Performance

The results for the spatial and spatio-temporal features
have been tabulated in Table II and Table III respectively.
In Table II, the anomalous frames based on spatial features
(contrast and homogeneity) are derived from GLCM. The
frames were divided into16 × 16 and 32 × 32 blocks. For
a particular frame, if an object was present, then the contrast
and homogeneity were computed and coded as spatial features
into the feature matrix. The feature matrix consisted of frames
as rows and blocks as columns. The cluster widthw was set
to 1, merging thresholdτ = 1

2
w, the number ofK nearest

neighbors equal to1 and standard deviationψ = 1 for all
the spatial features and block sizes. It is evident from the
Table II that for different block sizes and different features,
the anomalous frames change.

Table III provides the anomalous objects detected by
following the spatio-temporal coding scheme. Again briefly
mentioning, the frames were divided into different block sizes
as tabulated in the Table III. The feature input matrix consisted
of object identification numbers as corresponding rows and
blocks as the columns. If an object enters (centroid location)
a particular block, then that particular block is incremented
by value one and if the object stays in the same block,
the value for that block is unchanged. More specifically, the
maximum value of the entire row matrix is computed and



TABLE II. T HE TABLE LISTS THE ANOMALOUS FRAMES DETECTED BY

HYPERPHYSICAL CLUSTERING(DESCRIBED IN SECTIONIV) USING THE

SPATIAL FEATURES(CONTRAST AND HOMOGENEITY) EXTRACTED BY

COMPUTINGGLCM FOR EACH OF THE FRAME. THE FRAMES WERE
DIVIDED INTO 16× 16 AND 32 × 32. TOTAL NUMBER OF FRAMES IN THE

VIDEO SEQUENCE WERE31375

Spatial features

Contrast Homogeneity

16 × 16 32 × 32 16 × 16 32 × 32

2276 − 2300 2276 − 2300 9468 − 9475 12800

11201 − 11225 5557 − 5575 16526 − 16550 28467 − 28475

17601 − 17625 5726 − 5750 26851 − 26875 30276 − 30300

18101 − 18125 5851 − 5873 27751 − 27775 31026 − 31050

18251 − 18275 5901 − 5925

22999 − 23000 6001 − 6025

29976 − 30000 11201 − 11225

17601 − 17625

18101 − 18125

18251 − 18275

18451 − 18475

18801 − 18825

19401 − 19425

22999 − 23000

23501 − 23525

23626 − 23650

29976 − 30000

the resulting value is incremented by one. If the object is
revisiting the same block, the values are left unchanged. For
spatio-temporal features, the clustering parameters wereset as:
w = 5, τ = 1

2
w, K-NN= 3 andψ = 1. From the Table III,

it is clear that the encoding scheme generates a feature matrix
that enables to detect different anomalous objects for different
block sizes.

TABLE III. T HE TABLE LISTS THE ANOMALOUS OBJECT
IDENTIFICATION NUMBER DETECTED BY HYPERPHYSICAL CLUSTERING

(DESCRIBED IN SECTIONIV) USING THE SPATIO-TEMPORAL FEATURES

CODED FOR EACH OF THE FRAME. THE FRAMES WERE DIVIDED INTO

8× 8, 16 × 16, 32 × 32 AND 48× 64. TOTAL NUMBER OF UNIQUE
OBJECTS IN THE VIDEO WERE1163. THE UNIQUE OBJECT IDENTIFICATION

NUMBERS START FROM1.

Spatio-temporal features
8 × 8 16 × 16 32 × 32 48 × 64

163 62 78 62
336 78 163 78
638 96 336 443
677 163 366 541
780 336 459 783
783 677 503 784
784 780 541 911
830 783 783 919
831 784 784 1025
911 830 813 1046
921 831 830 1072
922 911 831 1086
932 919 911 1110
982 921 919
1005 922 921
1025 982 1072
1086 1025 1109
1087 1061 1110
1109 1086
1110 1087
1136 1109

1110
1136

In the case of detection of anomalous frames, the spatial
features not only included contrast and homogeneity, but also
correlation and energy. Furthermore, the block sizes included
8×8 for each of the features. However, there were no anoma-
lous frames detected by the hyperphysical clustering algorithm.
The reason behind this phenomenon can be explained in terms
of the spatial features. GLCM is calculated by measuring
the frequency of occurrence of pixel (grayscale)i which is
horizontally adjoining toj. This provides us a gray tone co-
occurrence matrix. The Contrast provides us a measure of in-
tensity difference

∑

i,j |i−j|
2 between a pixel and its neighbor

that is being measured using the Euclidean distance factored
by the normalized joint probability functionp(i, j) (derived
from GLCM). Likewise, correlation provides a measure of
correlation of a pixel with its neighbor; energy is simply the
sum of squared values of normalized joint probability matrix
elementsp(i, j); and the homogeneity captures the degree of
closeness of the distribution of the GLCM matrix elements
with respect to diagonal elements of the GLCM matrix. Due
to the nature of these measures, the feature input matrix using
correlation and energy resulted such that the hyperspherical
clustering algorithm was unable to detect the anomalous
frames. In other words, the feature input matrix was identical
(or closely similar) for all the frames. Thus, the hyperspherical
clustering was unable to detect anomalies. Fig. 4 shows the
sample anomalous frames representing the Table II.

In the case of detection of anomalous objects, due to the
nature of the spatio-temporal features proposed, the coding
mechanism resulted in detection of loitering objects in the
video scene. Loitering objects are those that spend significant
amount of time in the scene (not necessarily at a single space).
The identified objects were verified using the ground truth
generated by annotating the video files. All the objects detected
as anomalous were loitering in the scene compared to the
other objects in the scene (both spatially and temporally).
In the feature matrix, the maximum value of the row vector
corresponding to each object increases for anomalous objects
compared to other usual objects. Additionally, the feature
vector length for the anomalous object increases as the time
spent by the loitering object changes its spatial location but
remain within the scene, the values of the columns (represent-
ing blocks) increases for the same object. This makes coding
efficient for hyperspherical clustering to detect these objects
as anomalous. This is a significant result, since, an efficient
coding scheme can effectively uncover the underlying crowd
dynamics, and in particular, the pedestrian loitering using the
texture features.

The selection of the block sizes affects the detection of
anomalous frames and/or anomalous objects. For instance, in
the case of spatio-temporal approach, the larger block size
results in less coding (the maximum value for a particular
object is small) and hence the number of detected anomalous
objects are less. This is not necessarily true in all the cases. In
Table III, 16×16 yielded the maximum number of anomalous
objects as opposed to8×8. However, as expected, the32×32
and 48 × 64 block sizes provided less number of anomalous
objects, 18 and 13 respectively.8× 8 produced21 anomalous
objects, whereas16 × 16 resulted in23. Additionally, some
of the the anomalous objects (783, 784 and911) detected are
common although the block sizes are different. The calculation
of feature matrix for8 × 8 is computationally intensive as



(a) Frame number: 2206 (b) Frame number: 11201 (c) Frame number: 23000 (d) Frame number: 30000

(e) Frame number: 2276 (f) Frame number: 5557 (g) Frame number: 5726 (h) Frame number: 23626

(i) Frame number: 9468 (j) Frame number: 5557 (k) Frame number: 26875 (l) Frame number: 27775

(m) Frame number: 12800 (n) Frame number: 28470 (o) Frame number: 30276 (p) Frame number: 31050

Fig. 4. The figures show the frames detected as anomalous. Themask defined in Fig. 1 is used. Anomalous frames are ordered asfollows: Contrast (16× 16)
(a)—(d); Contrast (32 × 32) (e)—(h); Homogeneity (16 × 16); (i)—(l), and Homogeneity (32 × 32) : (m)—(p). The frame numbers are representative frames
from Table II. The black polygonal region in the figures surronding the objects are due the mask used in this view of camera.The mask is provided in Fig. 1-(d).
Only the interior (white region) in the mask is considered for analysis.

compared to the others. We encountered memory problems
and were unable to detect the anomalous frames (using the
spatial features) for8 × 8. For the same reason, this has not
been reported in Table II.

The advantage of the co-occurrence matrix is that the
spatial inter-relationships of the gray tones remain invariant
under transformation. On the other hand, the co-occurrence
matrix loses its strength in capturing the shape information of
the objects [35]. There is a need for more research on how to
effectively code the spatial and spatio-temporal featuresand
the optimal block sizes. Furthermore, the parameters chosen
for the hyperspherical clustering were based on empirical
knowledge of the video and the clustering algorithm. Estima-
tion of optimal parameters for clustering requires additional
work in this direction.

VI. CONCLUSION

Analysis of crowd behaviour in public places is an indis-
pensable tool for video surveillance. Detection of automated
anomalous crowd behaviour is a critical problem with the in-
creased human population and surveillance applications. In this
work, the anomalous frames and objects in a video were de-
tected using the new encoding schemes for spatial and spatio-
temporal features. Spatial features revealed the anomalous
frames by using contrast and homogeneity measures. Loitering
behaviour of the people were detected as anomalous objects
using the spatio-temporal features. Hyperspherical clustering
algorithm was used to detect anomalies with excellent results.
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