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Abstract— Post-stroke hemiparesis often impairs gait and
increases the risks of falls. Low and variable Minimum Toe
Clearance (MTC) from the ground during the swing phase
of the gait cycle has been identified as a major cause of
such falls. In this paper, we study MTC characteristics in 30
chronic stroke patients, extracted from gait patterns during
treadmill walking, using infrared sensors and motion analysis
camera units. We propose objective measures to quantify MTC
asymmetry between the paretic and non-paretic limbs using
Poincaré analysis. We show that these subject independent
Gait Asymmetry Indices (GAIs) represent temporal variations
of relative MTC differences between the two limbs and can
distinguish between healthy and stroke participants. Compared
to traditional measures of cross-correlation between the MTC of
the two limbs, these measures are better suited to automate gait
monitoring during stroke rehabilitation. Further, we explore
possible clusters within the stroke data by analysing temporal
dispersion of MTC features, which reveals that the proposed
GAIs can also be potentially used to quantify the severity of
lower limb hemiparesis in chronic stroke.

I. INTRODUCTION

Strokes account for 5.5 million deaths and the loss of several

million years of healthy life from related disabilities every

year [1]. Gait impairment is common among stroke survivors,

leading to an increased risk of falls during rehabilitation in

the chronic phase [2]. Over 50% patients in home-based

rehabilitation encounter at least one fall within 12 months, with

several having multiple falls [3]. Impaired signal transmission

from the motor cortex reduces foot trajectory control, thereby

leading to tripping due to unanticipated foot contact with

ground objects, the primary cause of most falls [4]. Therefore,

gait monitoring is important during home-based rehabilitation

to provide necessary interventions to prevent tripping [5].

A critical gait cycle event is the Minimum Toe Clearance

(MTC) in the swing phase, when the vertical distance between

the lowest part of the foot and the ground surface is mini-

mum [6], [7]. Low mid-swing MTC from the ground has been
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found to be a major tripping risk during ambulation [4], [6].

Post-stroke hemiparesis leading to one-sided motor weakness

may alter the biomechanics of the paretic limb, contributing

to changes in its swing phase dynamics. These alterations

result in unsuccessful foot clearance contributing to falls and

consequent injuries in chronic stroke [8].

Evidence of MTC asymmetry between dominant and non-

dominant limbs has been observed in older adults [4]. MTC has

been found to improve by providing biofeedback during gait

training. In [7], gait cycles exhibited lower mean and variability

in MTC in a no-intervention baseline walking compared to

walking with biofeedback in healthy participants. Other studies

showed improvements in mean MTC with gait training in

an elderly [5] and a small chronic stroke population [9].

In [8], the authors showed that ankle angle and knee flexion

velocity during toe-off and peak knee extension moment during

terminal stance were significantly different during tripping

in stroke patients that lead to unsuccessful foot clearance

and a functionally longer paretic limb. However, there is

no suitable measure to distinguish and quantify the MTC

differences between paretic and non-paretic limbs in stroke

patients, tested over a significant participant size. Begg et.

al. [5] have previously devised biofeedback-based gait training

during treadmill walking to study foot clearance characteristics,

which has been recently extended to study chronic stroke

patients [10], the focus of this work.

In this paper we evaluate objective measures of bipedal

toe-ground clearance asymmetry to identify stroke affected

gait from lower limb position data acquired using a motion

analysis camera during treadmill walking. We hypothesize

that MTC characteristics will be highly different between

the paretic and non-paretic limbs in chronic stroke compared

to healthy participants. We use Poincaré plots to visualize

and quantify temporal variations of the relative difference

of MTC between the two limbs. A Poincaré plot obtained

from consecutive data points plotted on a 2D Cartesian plane,

represents rhythmic and chaotic patterns in a time series. It has

been predominantly used to study heart rate variability [11]

and also been applied in gait pattern analysis [7]. Standard

descriptors derived from these plots include SD1 and SD2, that

measure data dispersion perpendicular to the line of identity

and along the line of identity respectively, on the 2D plot.

In [12], Complex Correlation Measure (CCM) was proposed to

capture temporal dynamics of data from the Poincaré plot. In

our recent work [13], we showed that Poincaré analysis can be

used to estimate asymmetry in upper limb activities to identify

stroke severity from wearable sensor data. In this work, we
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extend this idea to gait analysis and show that measures of

MTC asymmetry derived using Poincaré analysis can better

differentiate between healthy and chronic stroke participants

compared to traditional statistical or cross-correlation measures.

We further explain the physiological significance of these

measures and show their potential use in automated monitoring

of gait patterns during stroke rehabilitation.

II. METHODS

A. Data Acquisition

30 stroke survivors (40% female) with age 70.23±12.05

years, height 1.69±0.11 m and body mass 85.04±19.24 kg,

were included in the study. Participants were a minimum of

six months post-stroke and were assessed by physiotherapists

using Functional Independence Measure (FIM) and Stroke

Rehabilitation Assessment of Movement (STREAM) scores for

lower limbs [5]. They had no other health condition to prevent

or interfere with treadmill walking. Additionally, 18 healthy

participants were included as controls in this study, among

which, 44% were identified as healthy elderly (33% female)

with age 71.69±5.47 years, height 1.60±0.06 m and body

mass 64.8±7.28 kg and the rest as healthy young (0% female)

with age 33.66±3.14 years, height 1.75±0.06 m and body

mass 78.0±8.90 kg. Informed consent was ensured from all

participants and the study (registered on the Australian and New

Zealand Clinical Trials Registry - trial ACTRN1261300026741)

was approved by the human research ethics committees of the

Victoria University and the Austin Hospital in Melbourne.

All participants walked on a motor operated treadmill at

their preferred speed as shown in the acquisition setup in

Fig. 1(a). They were equipped with a safety harness and used

handrails to maintain stability. Two Optotrak Certus (Northern

Digital Inc.) motion analysis camera units on each side of the

treadmill were used to capture 3D position co-ordinate data

from the lower limbs at 100 Hz. Optotrak infrared emitting

diodes were attached to the anatomical locations representing

the distal extremity of the toe and heel over the participants’

own comfortable shoes. Data during 3 to 10 minutes of steady

state walking were acquired from all participants.

(a) (b)
Fig. 1. Gait data: (a) acquisition set-up showing a participant with attached
sensors on the treadmill and (b) swing-phase of a gait cycle showing MTC.

B. MTC Extraction and Pre-processing

The 3D motion co-ordinates of the markers from the Optotrak

system represent x-axis (anterior-posterior) parallel to the

walking direction, the z-axis (vertical) perpendicular to the

treadmill belt and the y-axis (medio-lateral) perpendicular to

x and z. From each gait cycle, swing phase events toe-off and

heel-strike were identified using gait event detection algorithm

based on heel and toe velocity and acceleration [14]. This

was followed by computation of the vertical toe height at

MTC as the toe vertical local minimum between the first

maximum following toe-off and the second maximum of

vertical displacement as described in [4], [5]. A sample gait

cycle showing the important swing phase events is illustrated in

Fig. 1(b). Toe heights at MTC were extracted from each limb

producing time series MTCl and MTCr from the left and the

right foot respectively, each of length n, where n is the number

of gait cycles considered. Prior to further processing, each

MTC series was filtered using a 5-sample smoothing median

filter. The stroke affected participants have significantly lower

n. We used the first 145 gait cycles (minimum data length

among all participants) from each subject for our analysis.

C. MTC Asymmetry Computation

To investigate the relative difference between the foot

clearance of the two limbs, we first compute a sur-

rogate difference signal, MTCd, which comprises the

stride-to-stride absolute difference between MTCl and

MTCr, i.e., MTCi

d
= |MTCi

l
− MTCi

r| for all

i ∈ {1, n}. Then a Poincaré plot is constructed for

MTCd as PP ≡ {(MTC1
d
,MTC2

d
), (MTC2

d
,MTC3

d
), ...,

(MTCn−1

d
,MTCn

d
)} comprising n− 1 pairs of points. Then,

we quantify the dispersion of these points on the PP using

different Poincaré descriptors as Gait Asymmetry Indices

(GAIs). First, the standard Poincaré descriptors SD1 and SD2

for MTCd, dSD1 and dSD2 are derived by fitting an ellipse

whose axes x1 and x2 are related to the axes of PP by a

rotation of θ = π

4
as follows, ∀i ∈ {1, (n− 1)} [11]:

[

x1

x2

]

=

[

cosθ −sinθ
sinθ cosθ

] [

MTCi

d

MTCi+1

d

]

(1)

The dispersion of the data points along x1 and x2 are then

measured by the descriptors dSD1 and dSD2:

dSD12(m) = V ar(x1) = V ar(
1√
2
MTCi

d−
1√
2
MTCi+1

d
)

(2)

dSD22(m) = V ar(x2) = V ar(
1√
2
MTCi

d+
1√
2
MTCi+1

d
)

(3)

From (2) and following [11], we can write dSD1 as (4),

where dSDSD denotes the standard deviation of the successive

differences of MTCd time series.

dSD12 =
1

2
V ar(MTCi

d −MTCi+1

d
) =

1

2
dSDSD2 (4)

Further, given dSD be the standard deviation of MTCd, it

can be shown that dSD12 + dSD22 = 2dSD2, such that

dSD22 = 2dSD2 − 1

2
dSDSD2 (5)

Therefore, following [11], dSD1 and dSD2 representing

the variations of the difference surrogate along the width

(perpendicular to the line-of-identity) and length (along the line-



of-identity) of the ellipse fitted to PP , are actually indicative

of short-term and long-term variability in the relative MTC

difference between two limbs. Sample Poincaré plots for a

control and stroke affected participant have been illustrated in

Fig. 2, showing these GAIs. The figures show that the plot for

the stroke participant is more spread out with higher values

of dSD1 and dSD2, indicating higher variability in MTC

difference between the two limbs, compared to that for the

control. However, dSD1 and dSD2 are measures of overall

variability without including temporal information. Hence, we

also compute Complex Correlation Measure (CCM) [12] on

MTCd, that represents the stride-to-stride variation of the

difference surrogate by embedding timing information, as

dCCM =

n−3
∑

i=1

|Di| (6)

where |Di| denotes the the area of a triangle comprised

of three consecutive pairs of points (MTCi

d
,MTCi+1

d
),

(MTCi+1

d
,MTCi+2

d
) and (MTCi+2

d
,MTCi+3

d
). In our pre-

vious work [12], we have shown that CCM is a function of

multiple-lag auto-correlation of a time series, thereby being

representative of a non-linear temporal variability measure.
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Fig. 2. Examples of Poincaré plots constructed on MTCd of gait data from
a (a) stroke and a (b) control participant showing dSD1 and dSD2.

Along with dSD1, dSD2 and dCCM , we also compute

dM , the mean of MTCd and dSDR, the ratio dSD1/dSD2.

Additionally, to compare the performance of the Poincaré

descriptors on the difference surrogate with traditional measures

of time series cross-correlation, we compute the correlation

coefficient CCMTC between MTCl and MTCr according to

(7), where µl and µr are the means, σl and σr are the standard

deviations of MTCl and MTCr respectively.

CCMTC =
1

n− 1

n
∑

i=1

(

MTCi

l
− µl

σl

)(

MTCi
r − µr

σr

)

(7)

III. RESULTS AND DISCUSSION

We first present an analysis of the statistical significance of

the proposed GAIs. Fig. 3 shows the box plots of the Poincaré

descriptors dSD1, dSD2, dSDR, dCCM and dM as well

as CCMTC for stroke and control participants. It can be seen

that there is a high overlap between the interquartile ranges

(boxes) for dM (Fig. 3(e)). Similar overlap between the groups

is also visible for CCMTC (Fig. 3(f)), though the median

for stroke is slightly lower. This is because, as a measure of

correlation between the MTC of the two limbs, it is expected

to decrease with increasing MTC asymmetry in stroke. On the

other hand, for the other GAIs in Figs. 3(a), 3(b) and 3(c),

the medians for stroke are higher as expected, due to more

variability in the relative MTC differences between the two

limbs. Median dSDR is lower for stroke, indicating larger

long-term variability. For these GAIs, the overlap between

the interquartile ranges of the two groups is minimal, with

dSD2 and dSDR being the descriptors showing maximum

separability between the two groups.
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Fig. 3. Distribution of the GAIs dSD1,dSD2,dCCM , dSDR, dM and
CCMTC shown using box plots in (a), (b), (c), (d), (e) and (f) respectively.

For determining the statistical significance of each GAI,

the non-parametric Kruskal-Wallis (KW) test is used. A non-

parametric test is used since the number of data samples

is relatively small. Additionally, the Area Under Receiver

Operating Characteristics Curve (AUC) is also studied for

differentiating control and stroke participants. These results

are tabulated in Table I. Following the observations from Fig.

3, dSD1 and dCCM are found to be statistically significant

with p < 0.05, while that for dSD2 and dSDR indicates high

statistical significance with p < 0.01. Furthermore, dSD2 and

dSDR also produce AUCs > 0.70 indicating that they can be

used to classify control and stroke patients. Therefore, we can

conclude that overall (long-term) variability of the difference

of MTC between the limbs, indicated by dSD2, is more

effective than stride-to-stride (short-term) difference of MTC

indicated by dSD1, in differentiating the stroke participants

from controls. On the other hand, CCMTC is not statistically

significant to distinguish between the two groups.

From Fig. 3, it is observed that the GAIs for stroke

affected participants span a wide range. Therefore, it is

interesting to explore possible clusters within the stroke

participants, causing these wide ranges. For this purpose,

we compute the changes in mean and variance of MTCd

through a dispersion index (DI). This is estimated as



TABLE I

PERFORMANCE OF GAIS IN IDENTIFYING STROKE

GAI dSD1 dSD2
+ dSDR+ dCCM CCMTC

p 0.034 0.007 0.009 0.044 0.172
AUC 0.68 0.73 0.73 0.67 0.60

+ implies high statistical significance with p < 0.01

DIm = mean(MTC1:n1

d
)/mean(MTCn1:n

d
) and DIv =

var(MTC1:n1

d
)/var(MTCn1:n

d
) respectively for mean and

variance of MTCd, where n1 = ceil(n/2). Hence, the DIs

measure relative change in mean or variance in the two halves

of all the gait cycles in consideration.

The motivation to study DIs comes from the temporal

variation of MTC observed across the stroke participants, some

examples of which are shown in Fig. 4(a). This plot shows that

MTCd can increase (or decrease) in mean as in S14 (or S1),

or decrease in variance as in S30, or remain quite unchanged

throughout, as in S20. Based on these observations, we expect

the stroke affected participants to comprise clusters on the 2D

plane constructed by plotting the DIs as shown in Fig. 4(b).

For unchanged MTC distribution, DIm and DIv are expected

to lie close to unity. Therefore, we draw concentric circles

centered at (1,1) on this plot with different radii (r) in steps

of 0.5. We observed that DIm exceeded 1.5 in 36.67% of the

stroke participants, whereas the same for DIv was 40%. In

comparison, we found that in controls, DIm and DIv exceeded

1.5 in only 16.67% and 27.78% of the participants. Therefore,

more stroke affected participants tend to improve MTC by

reducing the mean and variance of difference between the two

limbs in less than 150 gait cycles (considered in our study)

compared to controls. Additionally, we found that the mean

absolute deviation of {DIm and DIv} in stroke and control

population from unity were {0.67 and 0.78} and {0.26 and

0.59} respectively, again showing higher dispersion between

MTC characteristics in first and the second half of gait cycles

in stroke participants compared to controls. Possible reasons

of variability of the GAIs in the stroke participants may relate

to the severity of hemiparesis and the time elapsed from the

attack. It is to be noted that, while majority of the participants

improve MTC difference in the second half indicated by DIm
or DIv being above 1, a small number of participants seem to

deteriorate as well (Fig. 4(b)). Future work in this direction

would include correlating these clusters with clinical scores

(e.g. FIM or STREAM) for mobility analysis as a measure of

global function in chronic stroke.
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Fig. 4. MTC variability within stroke participants: (a) MTCd time series of
example data from four subjects and (b) mean and variance dispersion indices
on a scatter plot showing circles with r =0.5 and r =1.5 in bold.

IV. CONCLUSION

In this paper, we have explored objective measures of gait

asymmetry in stroke survivors through Poincaré analysis on

lower limb position data. We showed that temporal rhythmic

variations in the difference of minimum toe clearance between

two limbs can identify stroke affected individuals. This

method can also be used to analyse the severity of lower

limb hemiparesis, thereby being suitable for automated gait

monitoring during rehabilitation. Future work in this direction

should include studies on the utility of these measures for

monitoring gait improvement in stroke with biofeedback, as well

as methods to correlate the asymmetry measures with clinical

scores of hemiparesis severity to track disease progression.
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