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Abstract—Crowd density estimation has gained much atten-
tion from researchers recently due to availability of low cost
cameras and communication bandwidth. In video surveillance
applications, counting people and creating a temporal profile is
of high interest. Surveillance systems face difficulties in detecting
motion from the scene due to varying environmental conditions
and occlusion. Instead of detecting and tracking individual
person, density estimation is an approximate method to count
people. The approximation is often more accurate than individual
tracking in occluded scenarios. In this work, a new technique to
estimate crowd density is proposed. A block-based dense optical
flow with spatial and temporal filtering is used to obtain velocities
in order to infer the locations of objects in crowded scenarios.
Furthermore, a hierarchical clustering is employed to cluster
the objects based on Euclidean distance metric. The Cophenetic
correlation coefficient for the clusters highlighted the fact that
our preprocessing and localizing of object movements form
hierarchical clusters that are structured well with reasonable
accuracy without temporal post-processing.

I. INTRODUCTION

Crowd density estimation has recently gained significant
attention from researchers in the field of computer vision.
Growing population and urbanization has mobilized the day-to-
day activities and consequently, people endeavor to participate
more often in public events. More often than not, this lead to
scenarios such as stampede, people crushing and unruly crowd
behavior at large events. Monitoring of such activities leads to
adopting mitigating strategies thereby avoiding crowd related
disasters. Computer vision techniques can be used for such
purposes due to wide availability of cameras. People detection
and tracking have been widely adopted for monitoring abnor-
mal activities. People counting has also been an integral part
of surveillance and security. Estimating people at public places
such as airports, stadia, shopping malls, transport facilities etc.,
are some of the applications of people counting. In the event of
emergency such as fire, stampede, eruption of violence etc., we
require an estimate of people currently in different spaces of
the arena. Albeit people detection and tracking systems exist,
counting people by detecting individuals and tracking is not
necessarily required for this type of application and often fails
in occluded scenarios. The primary objective of resolving the
mishaps in the buildings and at public spaces are to have an
estimate of number people rather than to have an exact figure.

Surveillance systems face difficulties in detecting mo-
tion from the scene due to varying environmental condi-
tions. Nonuniform illumination, cast shadows, nonrigid hu-

man movements and occlusions are some of the major chal-
lenges [1]. In the first stage, to eliminate noise and extract
moving objects either background subtraction method or mo-
tion estimation based on optical flow is practised. Background
subtraction considers a background model of the scene for
a particular view and subtracts this model from incoming
video frames to extract the foreground pixels. Mixture of
Gaussian (MOG) [2], [3] based background modeling is widely
adopted. There exist several modified versions of MoG. On
the other hand, optical flow uses motion estimation based on
apparent motion of objects instead of explicitly modeling the
background. Horn-Shunck [4] and Lucas-Kanade [5] are the
two major versions of optical flow.

In this paper, Horn-Shunck [4] optical flow approach is
used for motion detection and estimation as a part of prepro-
cessing stage. The calculated dense optical flow of the frame
is divided into blocks for block-based relative flow analysis.
Later, the flow analysis in the region of frame is performed,
where in density need to be estimated. Further, hierarchical
clustering is used to cluster the motion information with each
cluster representing the estimate of presence of an object in a
given area. The objective is to estimate the density of crowd
and contributions in this paper are:

• Use of block-based optical flow approach for den-
sity estimation as opposed to background subtraction
where foreground pixels are chiefly used.

• Density estimation is based on unsupervised approach
- to provide an estimate of number of people in a given
area using optical flow and clustering, without using
any supervised training approach.

The paper is organized as follows: Section II provides
an overview of existing methods and their approaches. Sec-
tion III provides necessary details of our proposed approach,
Section IV provides the results of the proposed approach and
finally, our work is concluded in Section V.

II. RELATED WORK

Most of the crowd density estimation use either the texture
features on local and global level or extract foreground pixels
using motion information. The extracted features or the fore-
ground pixels are then mapped to the density in a given area or
region. Rahmalan et al. [6] used texture features—Gray Level
Dependence Matrix (GLDM), Minkowski Fractal Dimension



(MFD) and a new technique termed as Translation Invariant
Orthonormal Chebyshev Moments (TIOCM)—to classify the
crowd density into five classes (very low, low, moderate, high
and very high) using Self Organizing Maps(SOM). Wu et
al. [7] utilized texture features (GLDM) at local and global
level, scale normalized for perspective correction and Support
Vector Machine (SVM) for abnormal crowd density detection.
Aijun et al. [8] used Kanade-Lucas-Tomasi (KLT) [5] tracking
features to estimate the crowd density in public venues. The
KLT features were tracked, re-spawned, conditioned and clus-
tered to identify individual objects. Ma and Bai [9] used four
texture features (contrast, homogeneity, energy and entropy)
and ν-Support Vector Regression (ν-SVR) for high crowd
density estimation. The four statistical measure provide a
16-feature vector. However, this approach requires to tune
the ν parameter for video sequences during training. Ma et
al. [10] used texture features for crowd density estimation.
Each frame is divided into patches and further, to extract
texture features, Gradient Orientation Co-occurrence Matrix
(GOCM) was proposed. The GOCM features were used for
visual vocabulary construction. However, all these methods
require training to estimate density.

On the other hand, model-based approaches estimate pa-
rameters to estimate density. Mao et al. [11] estimate the
density using eight low-level features and regression analysis.
A low-complex background model was used for background
subtraction. Eight features (blob area, Harris corner, KLT
feature points, contour number, contour perimeter, ratio of
contour perimeter to area, Canny edge and fractal dimension)
were extracted. Furthermore, perspective and occlusion cor-
rections were made. To estimate the crowd density, multi-
variable linear regression model was used on feature inputs.
Hou and Pang [12] used foreground pixels and neural net-
work for density estimation. Based on three different on the
morphological operations on extracted foreground pixels, the
crowd density was estimated with the use of neural network.
Guo et al. [13] used optical flow and Markov process for
crowd density estimation. Optical flow was used for motion
information and later the noise was removed. The position of
the objects in the crowd are modeled as Markov Random Field
(MRF). The density of the crowd is estimated using neighbors
by applying least-squares method.

Hsu et al. [14] used motion frequency to estimate the den-
sity. Using cell approach, Discrete Cosine Transform (DCT)
was used to analyze the frequency of moving objects. Six fea-
ture vectors are extracted from DCT coefficients. Further, SVM
was used for training and classifying the estimated density into
five categories: very low density, low density, moderate density,
high density and very high density. Srivastava et al. [15]
estimated the crowd flow density by accumulating foreground
pixels over time. Using a scaling factor based on number of
pixels required to represent a person in the given strip (area),
the foreground pixels over time reveal the number of people
traversed across the region. Four Gray Level Co-occurrence
matrix (GLCM) were created based four orientations : 0◦, 45◦,
90◦ and 135◦. In addition, four statistical features (energy,
entropy, homogeneity, and contrast) for each of the GLCM
matrices were extracted. Again, both of these methods require
training for density estimation.

Rodriguez et al. [16] consider the high density scenes as

global approach considering the scene geometry instead of
localizing the individual person and tracking. This is formu-
lated as energy minimization problem by jointly optimizing
the individuals’ detection and estimate of the crowd density.
These parameters are learned from training images. Xiong et
al. [17] approached the problem of crowd density based on
image potential energy. The system uses adaptive Gaussian
Mixture Model (GMM) for background modeling and conse-
quently extract foreground pixels. The image potential energy
is calculated based on object distance from the camera and
occlusion factor. It is clear from the above review that most of
the methods use training and texture features estimate density.
Chen et al. [18] use quantized optical flow directions and
Euclidean distance among feature points to form clusters. In
contrast, the proposed approach uses optical flow magnitude
to detect the presence of objects and hierarchical clustering to
estimate density.

III. METHODOLOGY

This section details the proposed approach to crowd density
estimation. The width of frames in videos are of the size of
640×480. To start with, let I(x, y, t) represent the video frame
with x, y corresponding to the coordinates of the pixels and t
representing the time. The flowchart of the proposed approach
is shown in figure Fig. 1.

A. Preprocessing

Video data often contains high-frequency noise informa-
tion. The presence of high-frequency noises cause the low-
frequency motion information to be undetected. At first, the
video sequence is fed to a subroutine that creates a structure
for video data. Each of the video frames are converted from
RGB to grayscale for processing. In order to handle noise
information, a 2D Gaussian filter was designed over the entire
image with a standard deviation of σ = 0.5 and a block size
of 5 × 5. These parameters were chosen such that we do not
loose complete edge information and at the same time keeping
low-frequency information.

B. Motion Estimation

After obtaining the grayscale images, dense optical flow
between two frames are computed using Horn-Shunck [4]. In
this method, irradiance of the scene is assumed to be constant
while determining the optical flow. The optical flow between
two frames is given by:

O := {x+ iy : x, y ∈ R} ∈ C
m×n (1)

where m,n ∈ R and i =
√
−1. Motion was estimated by

considering every 5th frame.

C. Filtering

The optical flow obtained corresponds to horizontal and
vertical velocities of objects in the scene. The resultant mag-
nitude of the velocities is computed by:

mag := {(x2 + y2)
1

2 } ∈ R
m×n (2)



1) Spatial Filtering: A median filter of 5×5 is used to filter
out the noise. The resultant optical flow is divided into blocks
of size b× b. For each block, a single optical flow magnitude
is assigned by computing the median of all the flow values in
that block. This is continued for all the blocks of the frame.
Similarly, the optical flow for up to t seconds is computed and
all of them are processed and stored as aforementioned.

2) Temporal Filtering: For each block, the maximum of
all the values along time axis is computed from the stored
information. This results in a map of spatio-temporal activity.
This step is important because, often, if only instantaneous
optical flow information of two frames is considered, the
time motion information will be discontinuous due to object
movements and occlusion. This acts like a sliding window
along the time axis.

D. Hierarchical Clustering and Density Estimation

Hierarchical clustering is an unsupervised approach as
compared to other clustering algorithms such as k-means.
Hence, the aim of Hierarchical clustering is find out the
number of clusters based on feature input matrix. In this
case, the feature input matrix is the spatio-temporal activity.
Now that a spatio-temporal information about the movement is
available, only the region of interest in the scene is considered
and rest of the regions are masked. After masking, the region
of interest contains the motion activities pertaining to objects
with some blocks delineating high activities and others low.
The observation is that the center of objects posses peak values
and decreasing as we move away from the center. Similarly,
if there are several objects in the region of interest, several
peaks separated by low values are available. Since each peak
approximately corresponds to individual objects, a hierarchical
clustering algorithm is designed to cluster the masked values.
There are three main steps in clustering: (a) find the distance
among the masked values, and (b) group the objects (two
nodes) with similar distances, and (c) continue till all the
nodes have been grouped. We used Euclidean distance among
masked values for calculating distances. Density (number of
people) in a given area is mapped to number of distinct clusters
that can obtained from the clustering algorithm. From our
observation, the distinct peaks correspond to individual objects.
Thus, density using both spatial and temporal information is
determined.

IV. RESULTS AND DISCUSSION

The proposed method was tested using 2 separate videos
(varying object sizes) collected at the Melbourne Cricket
Ground (MCG). The videos included crowded scenarios. The
implementations were performed in MATLAB 8.0 using Com-
puter Vision System Toolbox on Windows XP (SP2 Profes-
sional, 32-bit system) equipped with an Intel R© i7 − 2600
CPU running at 3.4 GHz. The system also included 512
MB ATI Radeon

TM

HD 5450 Graphics card. In this work, we
have compared our results with ground truth. In the proposed
method, optical flow for 0.2s is calculated, which is equivalent
to skipping 5 frames and find maximum of optical flow
temporally for up to 5 frames (t = 1s). The frame number,
cophenetic correlation coefficient of the clusters and accuracy
in estimating the density are provided in Table I and Table II
respectively for Video 1 and Video 2. Cophenetic correlation
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Fig. 1: Flowchart of our approach to density estimation

TABLE I: Analysis of Video 1

Frame Number CCC Ground Truth Estimated Accuracy

150 0.998 0 0 100%

165 0.9962 1 1 100%

245 0.9929 2 2 100%

305 0.9862 4 3 75%

• CCC - cophenetic correlation coefficient

TABLE II: Analysis of Video 2

Frame Number CCC Ground Truth Estimated Accuracy

2140 0.9993 3 2 66.67%

2185 0.9982 3 2 66.67%

• CCC - cophenetic correlation coefficient

coefficient (CCC) is a measure indicating as to how well the
cluster is formed using the distance metric. A CCC of closer
to 1 provides better clustering. The result for Video 1 are
shown in Figs. 2, 3, 4 and 5 for no-object, single-object, two-
object and four-object scenarios respectively. Similarly, Fig.
6 provides the result for three-object scenario. Table II has
another result for Video 2. The output is similar to Fig. 6 result,
hence, the only the result is provided in Table reftab:table2.
In Video 1, the block size was set to 32 × 32 and in case of
Video 2, it was set to 16 × 16 in order to cater to varying
object sizes. In Fig. 2, Fig. 2-(a) indicates the region of
interest (ROI) where we would like to estimate the crowd
density; Fig. 2-(b) is the RGB frame; Fig. 2-(c) is the masked
output after calculating optical flow and performing spatial
and temporal filtering; Fig. 2-(d) is the motion (velocity) map
obtained corresponding to optical flow and filtering; Fig. 2-(e)
is the figure indicating the cluster distances after hierarchical
clustering—only distinct distances (clusters) are used to map
to number of people as an estimate of density; and Fig. 2-(f) is
corresponding dendrogram output for clusters (x-axis indicates
the object indices and y-axis the distance from that object and
each object is made of two nodes). Similar description hold
for Figs. 3, 4, 5 and 6. From the results it is evident that the
block-based optical flow analysis coupled with spatio-temporal
filtering provides us motion information of crowded scenarios.
The accuracy in the first video is better than the second video.
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Fig. 2: (a) region of interest (ROI), (b) RGB frame, (c) optical flow output after spatial and temporal filtering, (d) corresponding
motion (velocity) map, (e) distinct clusters = estimated number of people = 0, (f) dendrogram output
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Fig. 3: (a) region of interest (ROI), (b) RGB frame, (c) optical flow output after spatial and temporal filtering, (d) corresponding
motion (velocity) map, (e) distinct clusters = estimated number of people = 1, (f) dendrogram output

One of the reasons for this is that in Video 1, because of
perspective angle, the objects provide distinguishable optical
flow values, whereas in Video 2, the flow velocities would be
almost same everywhere. The second reason is that because of
camera angle, objects in Video 1 split as they approach camera
and hence, they can be separated resulting better accuracy.

However, in Video 2, objects move together and provide
little information about separation. Further work is required
to handle inter-object occlusions and self-occlusions among
objects, particularly when the object size is very small.
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Fig. 4: (a) region of interest (ROI), (b) RGB frame, (c) optical flow output after spatial and temporal filtering, (d) corresponding
motion (velocity) map, (e) distinct clusters = estimated number of people = 2, (f) dendrogram output
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Fig. 5: (a) region of interest (ROI), (b) RGB frame, (c) optical flow output after spatial and temporal filtering, (d) corresponding
motion (velocity) map, (e) distinct clusters = estimated number of people = 3, (f) dendrogram output

V. CONCLUSION

In this work, a new indirect method to estimate crowd
density is proposed. A block-based dense optical flow with
spatial and temporal filtering is used to obtain velocities that
can be used to infer the location of objects among crowded
scenarios. Furthermore, a hierarchical clustering to cluster the

objects based on Euclidean distance metric is employed. The
cophenetic correlation coefficient indicates that our preprocess-
ing and localizing of objects form hierarchical clusters that
are structured well. The accuracy of the results indicate that
the approach is suitable for obtaining approximate density in
crowded scenarios.
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Fig. 6: (a) region of interest (ROI), (b) RGB frame, (c) optical flow output after spatial and temporal filtering, (d) corresponding
motion (velocity) map, (e) distinct clusters = estimated number of people = 2, (f) dendrogram output
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