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Abstract. Determination of object direction in a multi-camera tracking
system is critical. The absence of object direction from other cameras
pose challenges if the object is along the optical axis. The problem of
determining object direction worsens further if the cameras in the ex-
isting infrastructure are improperly placed and are uncontrollable. To
determine the direction of an object in such situations, three methods
based on optical flow (OF) are presented. The first method uses cen-
troids of optical flow vector magnitudes and Kalman filter for tracking
and is suitable for less crowded scenarios. The second method uses geo-
metric moments to evaluate the flow vector distribution and to ascertain
the direction in case of crowded scenarios by partitioning the scene and
then applying moments to individual partitions independently. The third
method is appropriate for small-sized objects near vanishing points where
global object motion is less. During surveillance, whether multi-object,
single-object or crowded scenarios, the aforementioned methods are ap-
plicable accordingly. The results show that the object directions can be
accurately inferred from three methods for different scenarios.

1 Introduction

Crowd tracking is an important application in computer vision. In a networked
camera setting, within a camera sensor network, three scenarios of object iden-
tification and tracking are encountered: (1) overlapping field of view, (2) par-
tially overlapping field of view, and (3) non-overlapping field of view. In case
of partially overlapping and non-overlapping field of view, object tracking and
determining directions are significantly critical for co-operative tracking. Deter-
mining the correct direction of motion is important and challenging, specifically,
when fixed existing camera infrastructure is used. For instance, if we have an
object approaching towards the camera or moving way from the camera along
the optical axis, it is essential for us to determine the direction of the object.
However, obtaining direction information in the presence of multiple objects and
when the size of the objects are small becomes challenging.
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Background subtraction [1] and optical flow (OF) analyses are the two main
methods popularly used for extracting motion information from a region of in-
terest [2]. While the background subtraction models use the variations of the
pixels, OF uses irradiance constancy and smoothness in determining the pixel
displacement [3]. Subtracting background model would help to provide region of
movements, but not direction when object is small and along optical axis. The
subtracted model would still highlight the same region without any additional
directional information. The optical vectors provide magnitude and direction in-
formation along the X and Y axes of the image plane, but meager information
along the Z (depth of field of view) axis. For instance, when a camera is installed
along the corridors of a large venue, we often see people movement along the op-
tical axis and near vanishing point. Moreover, the placement of the camera (with
respect to height) is variable due to varying ceiling heights causing mismatched
size of the objects as seen in different cameras.

Using optical flow, in [4], the apparent motion of the observer and the actual
optical flow vectors were separated and were mapped using a rotating observer.
In [5], one-dimensional optical flow vectors were queued for each direction and the
queue that had the maximum positive value was considered as the moving direc-
tion. Shibata et.al. [6] have used the prominent direction indicated by the feasible
vectors. In determining the direction of the object, all of these works inherently
depend on the dominant vector directions. Others have proposed head-and-face
detection [7], walking direction [8] and gait action [9], where the primary aim
was to distinguish among different positional body angles.

Most of the CCTV systems will have vertical FoV (VFoV) of up to 45◦ from
the ceiling such as overhead cameras [10] [11] and tilted [12]. The data that
is being used in our work has VFoV up to 30◦. Because of this vertical FoV,
the objects at the far end of the perspective projection appear along the optical
axis. In this paper, we focus on resolving the issues that arise when using motion
information obtained from OF. We aim to determine direction of objects only
from motion information. Three methods have been proposed to address the
direction issue primarily using optical flow. The first method is applicable for
situations where objects are clearly separated. The method uses magnitudes of
the flow vectors, and their corresponding centroids to track the object direction.
The second method uses geometric moments of optical flow distributions in a
smaller search space and when the scene is cluttered to determine the collective
direction of objects. The third method analyzes the directions obtained by flow
vectors of the neighboring pixels of identified object region. The third method is
suited for crowded and small-sized objects when the objects appear to be moving
along optical axis near vanishing points where motion along X and Y axes are
limited.

2 Methodology

Horn-Schunck OF method [3] based on brightness constancy is used in this work.
The OF vector matrix O consisting of horizontal (x) and vertical (y) velocities
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(Eq. 1) is used to calculate the magnitude (mag) and direction (dir) of the vectors
as given by Eq. 2 and Eq. 3 respectively. Considering most of the surveillance
cameras come with short focal length, and consequently wide angle of view,
the imaging of the scene falls under the category of perspective projection. The

magnification factor m = f ′

−z
, where z is the distance from the camera to the

object point in the scene and f is the focal length of the camera [13]. As the
distance between the object and the camera decreases (i.e. z decreases) along
the optical axis, the magnification of the object increases and also the area (m2),
associated with it [13]. The OF pattern for a 3 × 3 object region moving along
the optical axis is as shown in Fig. 1.

O := {x+ iy : x, y ∈ R} ∈ C
m×n (1)

where m,n ∈ R and i =
√
−1.

mag := {(x2 + y2)
1

2 } ∈ R
m×n (2)

dir := {tan−1(
y

x
)} ∈ R

m×n (3)
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Fig. 1: Optical flow pattern for an object along the optical axis (a) approaching the
camera, (b) moving away from the camera, (c) and (d) depict eight directions juxta-
posed against X,Y directions.

2.1 Direction of an object using flow vector magnitudes

Here we consider less-dense case for inferring directions from multiple objects.
In case of less dense scenarios, background subtraction approach provides rich
information about the scene by subtracting the background of a scene. In order
to reduce the noise present in the video and to handle the crowded scenes, pre-
processing, segmentation and morphological operations were applied to the raw
video (24-bit RGB) by frame differencing combined with RGB channel opera-
tions G2 − B and (G2 − B)−1. All the pixels with OF magnitude greater than
zero are labeled as 1 and others as 0. Next, the binarized matrix is relabeled
by performing 8-connected-component analysis. Later, the centroids the rela-
beled matrices are stored for tracking. If an object is approaching towards the

The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-41939-3_60



camera, then the centroid would move in positive y direction. Furthermore, the
Kalman filter was implemented for tracking the objects with centroid of each
objects as the current position in the state space model. However, since there is
no information about the object directions, a separate routine was maintained
to derive directions from the updated equation of the Kalman filter. Based on
the previous locations and trajectories for up to n = 5 time periods, we deduce
object directions.

2.2 Direction of an object using geometric moments

In Section 2.1, the problem to determine directions was a global one, where we
considered the entire scene. The drawback of this approach is that because of
nonuniform illumination, shadows and noise, global approaches sacrifice certain
information to maximize the efficiency. In order to overcome loss of informa-
tion, we analyzed geometric moments to infer directions from the scene. The
analysis was conducted for a single-object moving in cardinal and inter-cardinal
directions are considered. Moments and functions of moments indicate invari-
ant pattern features [14] and are separately calculated based on horizontal and
vertical velocities obtained from OF. Table 2a (refer to the last page of the
paper) summarizes the interpretations based on the real (horizontal) and imag-
inary (vertical) components of the flow vectors. Fig. 1 shows the convention of
the x and y axes along with eight directions. The moments for real values are
given by equations (4)– (7). Likewise, we also compute the geometrical moments
(oI , σI , SI and KI) for imaginary values of the OF matrix. Our hypothesis is that
the same results can be applied to multiple objects to obtain collective object
directions by partitioning the scene into different windows based on centroids
and apply the same analysis within each window corresponding to an object of
interest. As a preliminary result, in this work we have presented the OF distri-
butions for a single object case. From Table 2b it is evident that Kurtosis can
be used to infer whether the object is approaching or moving away from the
camera.

MeanR = oR =
1

N

k=m
∑

k=1

l=n
∑

l=1

[OR(k, l)] (4)

VarianceR = σR =
1

N
×

k=m
∑

k=1

l=n
∑

l=1

[(OR(k, l)− oR]
2 (5)

SkewnessR = SR =
1

N
×

k=m
∑

k=1

l=n
∑

l=1

[(OR(k, l)− oR]
3

σ3

R

(6)

KurtosisR = KR =
1

N
×

k=m
∑

k=1

l=n
∑

l=1

[(OR(k, l)− oR]
4

σ4

R

(7)

where N = m× n.
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2.3 Direction of an object based on flow directions

When the objects are small and near vanishing points, their size will not con-
vey much information about direction because the size almost remains same.
Because of this there will be ambiguity whether the object is moving away or
approaching. As mentioned before, when the depth increases, the magnification
factor decreases. Therefore, in contrast to the above two methods, the objective
of this method is to extract information from the direction matrix (Eq. 3) for
an object’s region and make a decision as to whether the object is approaching
or moving away from the camera especially near the vanishing points. We In
order to determine the direction of the object, a template mask, T , is moved
over the direction matrix with the center of the 3 × 3 matrix being the pixel
under consideration. This pixel is assumed to be at the center of the circle as
shown in Fig. 2. A score is assigned to determine as to how much the neighboring
pixel’s direction vector is indicating that it is pointing towards the center pixel
is calculated. The scores are calculated from n = 0 to n = 7. This method is
equivalent to finding convergence (sink) or divergence (source) of flow field in a
given vector field.

T :=





1 1 1
1 0 1
1 1 1



 =





t5 t6 t7
t4 0 t0
t3 t2 t1



 (8)

A function f : (dir(k, l), n) 7→ c(k, l), maps OF vectors’ direction matrix to a
real number [−1, 1] considering the neighborhood of c(i, j). For a pixel at the
center of T , the eight neighboring pixels are considered. In each direction as
shown in Fig. 2, the c(i, j) is computed as given by: c(k, l) = 1

8

∑n=7

n=0
In, where

where,

In =











+1, |r| ≤ (±π
8
)

0 ,±π
8
< |r| ≤ ± 7π

8

−1, |r| > (± 7π
8
)

(9)

and
r = (n× π

4
)− tn (10)

where n indicates the position of the current pixel being analyzed from center
and tn is equal to the dir(k, l) along that direction in the neighborhood. The
value π

4
is chosen as a threshold such that r of the center pixel determines

whether the neighboring pixel is within ±π
8

radians from the center and In
assigns scores based of deviation from the center pixel’s value. The score is
incremented or decremented (by 1) based on whether the pattern agrees with the
indented direction (within ±π

8
) or in the opposite direction, and left unchanged

for any other directions. This is then summed for all the eight directions and
normalized. For this score to apply, the magnitude of center pixel must be zero.
Either Fig. 1-(a) or Fig. 1-(b) must be considered and scores must be applied.
For instance, considering Fig. 1-(a), if an element c(k, l) yields a score of 1, it
implies that there is an object moving away from the camera and a score of −1
for c(k, l) indicates that the object is approaching the camera.
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3 Results and discussion

(a) (b) (c)

Fig. 3: Tracking centroid of object using Kalman Filter for object id 30 - the value of
index y is increasing by 2 as object is approaching the camera - video collected from a
major sporting venue.

All implementations were carried out in MATLAB 8.0 using Computer Vision
System Toolbox on Windows XP-SP2, Intel i7− 2600, running at 3.4 GHz on a
32-bit computer utilizing 512 MB ATI Radeon

TM

HD 5450 graphics card.
The result of determining the direction using the centroids is given in Fig. 3,

where Fig. 3-(a) shows the centroid at location (368, 128), Fig. 3-(b) shows the
centroid at location (370, 130) and Fig. 3-(c) at location (370, 132) for a video
collected from a a major sporting venue corridor camera. Kalman filter was used
to keep track of the object and its location and the result for three different
frames are shown in Fig. 3. By keeping track of centroid locations, we estimate
the trajectory along optical axis.

For the second method, based on the rules in Table 2b, the features in Table 1
were extracted using the OF magnitude distributions of the scene. It is evident
that kurtosis can be used to determine whether the object is approaching or
moving away. Additionally, mean values of horizontal and vertical velocities pro-
vide movements in X and Y directions. Skewness can be used to measure the
object’s movements along diagonal directions. Fig. 4 shows two cases for a video
that was filmed in our lab specifically for calculating the moments.
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(a) Flow vectors for object near
camera - frame #10

(b) Flow vectors’ distribution for
object near camera

(c) Flow vectors for object far from
camera - frame #160

(d) Flow vectors’ distribution for
object far from camera

Fig. 4: Geometric moments are calculated based on OF distributions in (b) and (d).
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Fig. 5: (a) shows the ideal dir(k, l) for an object approaching the camera and (b) the
corresponding c(i, j) = +1. (c) shows the nonideal condition for an object approaching
the camera and (d) the corresponding c(k, l) = 3

4
< 1.
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The result for the third result was simulated and shows that if the flow
vectors’ direction for an object approaching the camera agrees with the Fig.
1-(a), then c(k, l) = 1. On the other hand, if the flow vectors’ directions are not
agreeing with either Fig. 1-(a) or Fig. 1(b), the method would detect this by
providing score between 1 and -1 to the region being analyzed. Pragmatically,
encountering the intended pattern exactly would be minimal. Hence, once can
relax the tolerance in each directions while calculating the scores. For the same
reason, we have shown only the simulated results. Furthermore, one can extend
the 3× 3 matrix to any p× p such that p ≤ min(m,n).

In a surveillance system we often come across single and multiple objects. In
case of multi-object scenarios, when the objects are larger in size (because of less
depth along optical axis) the first method provides object direction along optical
axis. Kalman filter is required to keep track of individual object’s centroids and
velocities to estimate the direction. Further during surveillance, we can separate
multiple objects into single objects and then apply the geometric moments on
flow vectors (this requires less processing cycles since the OF results are already
available) to find out the directions. It is to be noted that when multiple objects
are present, the OF directions do not convey meaningful information. In order to
make sense of the OF vectors, the distribution of geometric moments are used.
When the size of the objects becomes smaller, the first two methods would not
provide accurate results. Therefore, we concentrate on the optical flow vectors
of identified small region of the frame and apply the third method for direction
information (diverging or converging).

Moments Vector coefficients Feature

Mean Real, Imaginary X,Y directions

Skewness Real Diagonal movements

Kurtosis Real, Imaginary Object closeness

Table 1: Features extracted from moments.

4 Conclusion

Determination of object direction using optical flow along the optical axis was
presented. Three methods were proposed to calculate the direction based on OF
centroids, geometric moments, and direction flow pattern at any given instance.
In terms of suitability, the first method is applicable for situations where objects
are clearly separated. The method uses optical flow and background subtraction
to obtain centroids. Further, the Kalman filter is used for tracking and a sub-
routine to deduce directions based on previous location trajectories. The second
method is devised for obtaining directions when the scene is cluttered. In this
case the scene is divided into partitions and geometric moments are calculated
to infer collective group directions. The third method is suited for crowded and
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small-sized objects when the objects appear not to be moving along optical axis.
The results show that object direction along the optical axis can be deduced
from the three methods for different scenarios.
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