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Abstract—Event detection in crowded scenarios becomes
complex due to articulated human movements, occlusions and
complexities involved in tracking individual humans. In this work,
we focus on crowd event (activity) detection and classification. We
focus on active crowd (continuously moving crowd) events. First,
event primitives such as motion, action, activity and behaviour
are defined. Furthermore, a distinction is made among event
detection, action recognition and abnormal event detection. Fur-
ther, event detection and classification are defined on Riemannian
Manifolds that yields six different probabilities of the event
occurring. Using a new probabilistic approach, an automated
event detection algorithm is proposed that temporally segments
the event using a novel framework. The results indicate that
the proposed approach delivers superior performance in selected
cases and similar results in other cases, whilst the detection
model delay allows operation in near real-time. The Performance
Evaluation of Tracking and Surveillance (PETS) 2009 dataset was
used for evaluation. Existing crowd event detection approaches
used supervised approach, whereas we eschew semi-supervised
approach.

I. I NTRODUCTION

Analyzing events in videos is highly informative in learning
behavioral characteristics of the objects. However, detecting
and predicting events in videos is both exacting and chal-
lenging. Individual object detection and tracking in itself is
a challenging task in multi-object scenarios and the difficulty
further escalates during crowded scenarios. In particular, event
detection in crowded scenarios becomes complex when faced
with articulated human movements and occlusions [1]. The
primary objective of the event analysis is to localize the events
in space and time. Event detection can thus be summarized
to recognizing and detecting those patterns from the video
data in conjunction with object detection. This work is aimed
at detecting and classifying the crowd events (as shown in
Figure 1).

Human activity recognition has gained much importance in
recent times especially at locations where people go about their
daily activities (e.g. shopping malls), transits (e.g. airports),
public gatherings (e.g. sports or music events) and so on.
There has been a surge in video event detection applications
in response to voluminous usage, distribution and sharing of
videos (e.g. YouTube, Vimeo, VEVO and so on). Context-
based search, content-based video retrieval, video event la-
beling and video surveillance are some of these associated
applications of event detection.

There has been ongoing research on abnormality/anomaly
detection, where the system endeavors to classify the event

(a) Walking (b) Running

(c) Crowd formation (merging) (d) Splitting

(e) Local dispersion (f) Rapid dispersion (evacuation)

Fig. 1. Examples of crowd events - walking, running, crowd formation
(merging), splitting, local dispersion and rapid dispersion (evacuation) from
PETS 2009 [2] dataset

as normal or abnormal. Some of the examples of automated
detection of abnormal/anomalous/unusual events can be found
in [3], [4], [5], [6]. In [7], one can find a comprehensive
study of vision-based anomaly detection methods. Anomaly
detection, in general, operates on temporal domain data to
identify the events.

On the other hand, human action recognition require un-
derstanding of both spatial and temporal characteristics.Initial
reviews of human action recognition can be found in [8], [9].
A three-level hierarchical taxonomy based on object detection,
tracking and activity recognition was proposed in [10]. A
survey by Moeslundet al. [11] further elaborated on human
detection, tracking and activity recognition. In [12], thefocus
of the study was more on human motion representation. In



literature, the terms “actions” and “activities” are used inter-
changeably. Turagaet al. [13] defined the contexts in which
these terms are used. In [14], Aggarwal and Ryoo categorized
the human activities as gestures, actions, interactions and group
activities.

In this work, we focus on crowd event (activity) detection
and classification. The crowd events targeted are: running,
walking, crowd formation (merging), splitting, local dispersion
and rapid dispersion (evacuation)—(as shown in Figure 1).
Our approach to crowd event detection is different compared
to previous works (for which a detailed study is provided in
Section II) in that we do not track individual people, instead,
we use motion patterns to recognize, detect and provide
a probabilistic detection of crowd activities on Riemannian
manifolds. Our work is further focussed on theactive crowd
(where the crowd is in motion) as opposed to thestatic crowd
(where the crowd movement comes to a halt). Existing crowd
event detection approaches used supervised approach, whereas
we eschew a semi-supervised approach. Directional derivatives
and geodesic distances on Riemannian manifolds are used
for probabilistic detection of crowd events. Furthermore,we
provide delay in detection of events for selected cases. The
main contributions of this work are: (1) use of optical flow
features for event detection on Riemannian manifolds, (2)
semi-supervised approach to classification of crowd eventsand
(3) probabilistic detection of crowd events without tracking.

Section II first provides the definition of motion, action,
activity and behavior, followed by in-depth review of crowd
events. Section III provides a brief introduction to Rieman-
nian manifold and the problem formulation for crowd event
detection. Section IV develops the methods to probabilistically
detection of the crowd events. The information about the
dataset and results are provided in Section V followed by
discussion and conclusion.

II. RELATED WORK

Much work has been conducted in event detection applica-
tions, yet only, limited focus has been devoted towards crowd
event detection. It is worthwhile to note that event detection
in crowded scenarios differs from the crowd event detection
where the former refers to detection of events pertaining
to individual subjects (such as running, walking etc) in the
presence of multiple objects and possibly partially occluded,
whereas the latter refers to events associated with crowd
(group of people) movements. Additionally, there is lack of
clarity among the terms activity, event and behavior—more
often than not, these terms are used interchangeably. In this
work, we follow the taxonomy laid down by Chaaraouiet
al. [15], in which motion, action, activity and behavior have
been organized in a hierarchy. We consider “event” to be
synonymous to “activity” in this taxonomy.

• Motion - is considered to be the movement of the
actor/objects in the scene. This includes movement of
body parts with respect to a spatial location together
with displacement of actor from one spatial location
to another against time.

• Action - is considered as the interaction of the actor
with surrounding actors/objects. This can be regarded

as extraction of the frame-level semantics (e.g. hand-
shaking between two actors at a particular frame).

• Activity /Event - is the resulting consequence of
spatio-temporal interactions among actors. This can
be regarded as extraction of the windowed, temporal-
level semantics (e.g. detection of start and end timings
of handshaking between two actors).

• Behaviour - is a high-level representation of activities
of actors. This can be accounted as the unconstrained,
temporal-level semantics of the actors and its scene
(e.g. changes in actors’ behaviour before and after
handshaking).

To handle emergency events in crowded scenarios, An-
dradeet al. [16], [17], [18] proposed spectral clustering of
optical flow as features. An automatic model was extracted
by fitting an Hidden Markov Model (HMM) for each of
the video segments. Zhanget al. [3] used similar approach,
but the normal events were first learned and later, using
Bayesian framework, the abnormal events were detected. These
approaches, although applied to crowd, are indeed determining
whether the event is normal or abnormal, but not on classifi-
cation of crowd events.

Recently, localized spatio-temporal based approaches are
seen to be promising in event detection. Using flow matching
technique depicted in [19], [20] and combining shapes in a
volumetric setting, Keet al. [21], [22] prosed event detection
methods in crowded scenarios. Tranet al.[23] prosed spatio-
temporal search paths in volumetric setting applied to crowded
scenarios. However, these approaches are only applicable to
action recognition of an individual rather than event detection
of the crowd.

Agent-based modeling has been applied in many instances
to study the behavior of the interaction of people in be-
haviourial analysis. Chenet al. [24] applied agent-based tech-
nique to detect queuing, gathering and dispersion events with
the aid of tracking. It incorporates head features, template
matching, Kalman filtering and a Support Vector Machine
(SVM) for object agent analysis.

Garateet al. [25] used reference frame to extract motion in-
formation and 2-D Histogram of Gradients (HOG) descriptors
as features and are tracked to categorize the crowd events ap-
plied on PETS 2009 dataset. Utasiet al. [26] combined optical
flow with statistical filtering to separate background and also as
low-level features for probabilistic event recognition. The event
is classified based on evaluating the group membership of the
mean probability of low-level features with that of training set.
Chanet al. [27] utilized the dynamic texture model (generative
probabilistic model) was used to detect events consideringthe
sample output from a linear dynamic system as a video.

In a study by Benabbaset al. [28], optical flow was used
to extract motion patterns and build a direction and magnitude
model for crowd event detection. Liet al. [29] performed the
crowd event detection using the intersection of motion vectors
derived from Harris corner point and Kanade-Lucas-Tomasi
feature tracking. They classify the events based on the motion
vector patterns at local intersection points in the space and
membership event voting. It is worth nothing that most of the



methods are supervised and use training data to classify the
events.

III. PROBLEM FORMULATION ON RIEMANNIAN
MANIFOLD

A topological spaceM is regarded as a manifoldM
of dimensionn or n-Manifold if it is a Hausdorff space,
Second Countable, locally Euclidean (R

n) and smooth (dif-
ferentiable) [30]. The tangent spaceTpM for a pointp ∈ M,
can be considered as equivalence class of curves through p.
The partial derivatives provide the local coordinates at point
p. The Dpγ(t) : TpM → Tγ(p)N is a linear map. On a
finite-dimensional vector spaceTpM , directional derivative on
smooth functionγ(t) such thatγ(0) = p andγ̇p(t) is the initial
velocity vector atp ∈ M in direction of unit vector. The union
(disjoint) of tangent spaces for allp ∈ M forms the tangent
bundle. A Riemannian metricg on a smooth manifoldM is a
smoothly varying inner-product on each of the tangent space
and is given by:

gp : TpM× TpM → R (1)

A Riemannian manifold(M, g) is a smooth manifoldM to-
gether with Riemannian metricg. Video data can be considered
as a 6-dimensional manifold withp = f(r, g, b, x, y, t) ⊆ R6

and is assumed to be smooth (differentiable). Then, the video
event lies on an embedded5-d submanifold,f(r, g, b, x, y),
parameterized by time.

IV. M ETHODOLOGY

Before we proceed further, the crowd events as defined in
PETS 2009 dataset are first defined below:

• walking (W)- is the event where objects move at
a particular velocity collectively, which is less than
the velocity of the events defined in running. Further,
subevents are defined such asstanding (Ws), slow
walking (Wsw) and fast walking (Wfw) for efficient
recognition and detection of events. Therefore,W =
{Ws,Wsw ,Wfw}.

• running (R) - is theevent where objects take spatial-
temporal paths that are faster than those described in
walking. Furthermore,slow running (Rsr) and fast
running (Rfr) are defined assubevents of running.
Hence,R = {Rsr, Rfr}.

• crowd formation (merging) (F = {Ff}) - is the
event where the spatio-temporal analysis reveals that
objects are converging to a single point or multiple
points. Additionally, the tendency of objects portray-
ing this phenomenon is categorized under this event.

• crowd splitting (S = {Ss}) - is the opposite of crowd
formation. The objects in the scene would diverge
from a single point or from multiple points.

• local dispersion (D = {d}) - is a conditional event
where walking event is recorded in association with
crowd splitting.

• rapid dispersion (evacuation) (E = {Ee}) - a
conditional event where the running event is observed
in conjunction with crowd splitting.

The crowd events — walking, running, crowd for-
mation, crowd splitting, local dispersion and evacua-
tion — are subdivided into three subsets asA =
{W ,R}, B = {F ,S}, and C = {D, E} and C =
{(Ws,Wsw ,Wfw, Rsr, Rfr), (f, Ss), (d, e)} and are brought
under a single setC as:

C = {A,B, C} (2)
= {(W ,R), (F ,S), (D, E)} (3)
= {(Ws,Wsw,Wfw, Rsr, Rfr), (f, Ss), (d, e)} (4)

A. Walking and running events

Intuitively, one of the key distinguishing characteristicof
pairwise walking–running events is the velocity vectors. For
instance, we can safely assume that when we are walking,
we have a gait pattern that generates motion vectors that hasa
Gaussian distributionN (µW , σW ); likewise, for running event,
the distribution will beN (µR, σR), whereµW and µR are
the mean length of the optical flow vectors for walking and
running events respectively, andσW andσR are the standard
deviations of length of walking and running events accordingly.
To support this claim, Fig. 2 shows the variations of the optical
flow vectors’ length. The standard deviation and the mean of
the motion vector lengths’ during the walking and running
events from the PETS 2009 [2] dataset were computed. It is
evident that the mean of the length of optical flow vectors
increase for running events. Further statistics such as standard
deviation for each of the waveforms indicate that the walking
and running events can be distinguished using the length of
the optical flow vectors. This forms the fundamental basis for
other events as well.

Let M be a manifold of 5 dimensions. At first, the
directional derivatives in the directions ofx and y cartesian
planes are computed using the standard bases on the5-D
manifold. This is tantamount to computing tangent vectors
TpM at different pointsp ∈ M on the5-D manifold. Here, the
functional derivatives are assumed to be smooth function and
that the optical flow vectors are assigned for2-D manifold of
the5-D manifolds. Tangent bundleTM = ⊔p∈MTpM. Using
the vectors over the bundle, the temporal variations are used
to recognize the walking and running events.

The distribution of the vectors are updated over time with
a window measure (history) to compute the probability of
the walking and running events. Initially, the distribution is
assumed to be uniform and later the system is allowed to
evolve as per the new samples. The event is classified as
walking or running based on the sorted order of probabil-
ity distributions. The distribution with highest probability is
regarded the current event in the video scene. The model
has the constraint of minimum number of samples required
to compute the probability to avoid prejudiced output at the
initialization stage. The probability of walking and running
events are denoted byPr(W) andPr(R).

B. Merging and splitting events

The key distinguishing character of merging and splitting
events is the temporal evolution of the distances between
groups of people. As the distance between groups increase,
there is a very high likelihood that the people in the scene
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People start to run and gradually exit
the scene

People start to run and gradually, the scene
becomes empty

Running event

Fig. 2. The standard deviation and mean of the length of the optical flow vectors of the walking and running events for 14-16, View-001 of the PETS
2009 [2] dataset. Statistics for Mean (Std:0.0480, mean:0.0022, maximum:0.0758); statistics for Std. deviation (Std:0.0495, mean:0.0272, maximum:0.4076).
The waveforms clearly show that the length of the optical flowvectors can be used as key distinguishing feature.

are splitting and merging if the distance between them is
decreasing. This has been the general approach so far in
the literature. In this work, an additional constraint has been
employed to decide with higher degree of certainty. In addition
to distances between groups, the directions of the vectors are
also significantly important.

To start with, groups of people require to be first identified
and clearly demarcated. This is accomplished by identifying
the points on the manifoldM that result in nonzero tangent
vectors. Except for noise generated due to image characteristics
(quantization) and noise due to other isolated movements (such
as tree leaves, shadows), the majority of the tangent vectors are
due to movements of the people in the scene. The boundary of
the movements on the manifoldM is found by using boundary
conditions on theM. Isolated tangent planes are eliminated to
remove unwanted noise. This establishes the boundaries such
that people in the video scene are identified. Secondly, to find
the distances between groups, the geodesic distance between
groups are computed using tangent planes. A center of mass
for a particular group of people is calculated to identify the
tangent planes. This is achieved computing the spherical mean
given by:

1

wn−1

∫

∂B(p,r)

f dS(f), (5)

wherep ∈ U ⊂ M ∈ R
n, ∂B is the boundary with radiusr, f

is the function is5D parameter space,dS denotes the surface
integral andwn−1 is the surface area.

The geodesic distance between the groups by utilizing the

Riemannian metric tensor is given by (assuming the curves are
admissible):

Lb
a(γ)ij

def
==

∫ b

a

gγ(t)〈γ̇i(t), γ̇j(t)〉 (6)

whereγ is the geodesic curve,a and b are the point on the
tangent planes where spherical mean for each group has been
identified such thatγ : [a, b] → R, i andj subscripts indicating
different crowd groups.

The distance between different crowd groups are computed
for each frame using the temporal variations between the
frames. The direction constraint is added by computing the
divergence considering radiusr such thatr is within ∂B at
points on the manifold. The boundary points on the manifold
determine the extent of the group from the spherical mean.
This is equivalent to finding the boundaries of the crowd
groups from the centroid in 2D cartesian plane. Depending
on whether the crowd motion is acting as source or sink, and
the geodesic distance, the crowd events (merging–splitting) are
determined. Fig. 3 shows the merging and splitting patterns. If
the distance between the groups is increasing and the source
patterns are identified using the temporal evolution, then the
crowd event is regarded as splitting. If on the other hand,
the geodesic distance is decreasing and the motion from the
divergence is forming a sink at points on the manifold, then
the event is considered to be merging. In all other cases, the
crowd event is termed as agroup movement. The probability of
merging and splitting events are denoted byPr(F) andPr(S).



Fig. 3. Merging and splitting of crowd groups. In the scene, there is white crisscrossed point in the middle of the scene. (a), (b) – the motion pattern indicates
that the crowd is merging, where the crowd group is acting as asource. (c), (d) – the pattern of crowd splitting, where the crowd groups are in effect sinking.
The arrows indicate the direction of movement. The arrows are the output from the proposed approach. In the case of merging [(a) and (b)], the crowds gather
at that point. On the other hand, the crowd starts to split from the same point in case of splitting [(c) and (d)].

C. Local dispersion and evacuation events

The local dispersion event occurs when the crowd groups
move from a point in the scene towards outwards in all
directions while they are walking. This can be represented as
the conditional event given the people are walking and also
they are splitting and can be denoted asPr(D|W ,S). On other
hand, the evacuation event is the conditional event given the
people are running and are splitting and can be denoted as
Pr(D|R,S).

Thus far, in this section, the crowd events were defined
on Riemannian manifolds. Optical flow features were used to
detect the crowd events. The detection of six crowd events are
based on the probabilistic framework without tracking of the
individuals. The classification of the events are based on the
distribution of the probabilities for each events.

V. RESULTS AND DISCUSSION

In this work, PETS 2009 [2] has been used for identifying
six crowd events. This is the only dataset where the events
are clearly manifested into six crowd events. The dataset was
manually annotated to find the events as the ground truth.
Later, this was used to compare with the results available from
the proposed method. The proposed method was implemented
in OpenCV2.3 on a Virtual Box Linux machine (32-bit Ubuntu
12.04 LTS) equipped with1.5GB RAM and IntelR© i7− 2600
CPU running at3.4 GHz

A. Performance

The performance results have been presented in four layers
of assessment. At the first layer, the results have been presented
based on the classification results. Table I provides the con-
fusion matrix for all the six crowd events. From Table I–(a),
the walking events were correctly identified76% of the times,
with an error of24% as running. On the other hand,63% of
the running events were correct and37% of the events were
identified as walking. From Table I–(b), we see that merging
events were matching with the expected results up to88%.
Nevertheless,60% of the splitting events matched with the
true crowd splitting events. From Table I–(c), dispersion events
were94% of the times matched with ground truth; evacuation
events matched up to65%.

A second layer of comparison in terms of the delay in
the detection is provided in the Table II for View-001. The
results in Table II provides a comparison of detection of start

TABLE I. CONFUSION MATRICES FOR CROWD EVENTS TESTED ON

THE PETS 2009DATASET [2]. (A)- THE CONFUSION MATRIX FOR

WALKING AND RUNNING EVENTS; (B) - THE CONFUSION MATRIX FOR

MERGING AND SPLITTING EVENTS; AND (C) - THE CONFUSION MATRIX
FOR DISPERSION AND EVACUATION EVENTS.

W R

W 0.76 0.24
R 0.37 0.63

(a) Confusion matrix
for walking and run-
ning events.

F S

F 0.88 0.12
S 0.4 0.60

(b) Confusion matrix
for merging and split-
ting events

D E

D 0.94 0.06
E 0.35 0.65

(c) Confusion matrix
for local dispersion
and evacuation events

and end timings of the crowd events from the selected video
sequences. Figure 4 shows the corresponding temporal output.
For the walking events a minimum delay of one second and
a maximum of4 seconds were observed. Likewise, for the
running events, a minimum of2 seconds and a maximum
of 4 seconds delay were recorded. In the case of merging
and splitting events for View-001 (timestamp : 14-33), a
two seconds delay in detecting merging events and a second
delay in splitting events were registered. Both, dispersion
and evacuation events were reported by one second delay in
detecting the events.

TABLE II. C OMPARISON OF START AND END TIMINGS(IN SECONDS,
FPS=7) OF CROWD EVENTS DETECTION RESULTS WITH GROUND TRUTH
FROM SELECTED VIDEO SAMPLES. THE RESULTING TEMPORAL GRAPHS

HAVE BEEN PROVIDED IN FIGURE 4.

Video sequence
Ground Truth Detected

[Start–End] [Start–End]
(in seconds) (in seconds)

14-16, View-001
Walking Running Walking Running

[0–6] [6–15] [0–7] [7–17]
[13–24] [24–31] [17–28] [28–31]

14-33, View-001
Merging Splitting Merging Splitting
[0–29] [48–53] [0–27] [49–53]

14-33, View-001
Dispersion Evacuation Dispersion Evacuation

[0–48] [48–53] [0–49] [49–53]

As a third layer of comparison, the events were compared
in terms detection rates utilizing the precision and recallmea-
sures. Table III provides the comparison of different methods
to detect crowd events. In this work, the output is shown for
View-001 of the PETS 2009 dataset [2]. Leveraging upon
the domain knowledge, pragmatic knowledge and the expe-
rience from other video surveillance projects, we conducted
an experimental evaluation of events detection from different
views and found that View-001 best captures the crowd events.
The parameters used in the View-001 were applied to other
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Fig. 4. Demonstration of detection of crowd events. Refer toTable II for
delay in detection of events in the above results.

three views. Thus the proposed method is termed as semi-
supervised. The results in the Table III is the combined
results of all the different views. The comparison is conducted
with statistical filters [26] and motion pattern [28]. In [26],
background modelling has been used followed by optical flow.
In [28], motion pattern from optical flow is used for event de-
tection. Since, our method uses optical flow, these two methods
have been provided for comparison and analyses. From the
Table III, it is evident that merging and dispersion events are
best detected using the proposed approach with a precision
of 0.85 and 0.9 respectively; likewise, the recalls were 0.88
and 0.94 accordingly. Other pairwise events such as walking–

TABLE III. C OMPARISON OF CROWD EVENT DETECTION RESULTS.

Crowd Event Measure
Statistical Motion Our

Filters [26] Pattern [28] Approach

Walking
Precision - 0.97 0.61
Recall - 0.96 0.75

Running Precision 0.99 0.75 0.78
Recall 0.99 0.81 0.63

Merging Precision - 0.59 0.85
Recall - 0.45 0.88

Splitting Precision 0.65 0.47 0.66
Recall 1 0.47 0.6

Dispersion Precision - 0.67 0.9
Recall - 0.45 0.94

Evacuation Precision - 0.69 0.75
Recall - 0.82 0.65

running events’ performance is equally well compared to the
other methods (precision of 0.61 and 0.78, recall of 0.75 and
0.63). Similarly, splitting and evacuation events maintained
their performance (precision of 0.66 and 0.75, recall of 0.6
and 0.65).

Firstly, from the Table III we observe that, the proposed
approach is comparable to the existing approaches. Although,
the detection of walking and running events is slightly low,
splitting and evacuation moderately good, merging and disper-
sion are well captured compared to others. One of the possible
reasons for low detection rates is that the estimation of velocity
vector based on optical flow during crowded scenarios poses
some limitations. This can be improved with use of group
tracking techniques to estimate group velocity. Also, if the
tracking algorithms are lightweight and sufficiently fast,then
region-based optical flow can be implemented to improve the
running and walking events.

Secondly, it is important to note that the proposed approach
outperforms (in merging and dispersion events) where existing
methods did not prove to be efficient. One of the reasons for
this performance is the incorporation of temporal tangential
gradients. Existing methods used the training set to achieve
higher detection rates. Our final goal is to design automated
event detection model by reducing human intervention in
the detection of crowd events. From a video surveillance
perspective, merging and dispersion are more important for
behavioural analysis than merely walking and running events.
For instance, in the event of crowd panic in response to
possible injury or threat to human life at a stadium, then our
probabilistic model indicates this trend immediately, which
is an indispensable model compared to existing methods.
Previous methods combined all events, except running and
walking into a single class. We separated the merging/splitting
events from local dispersion/evacuation events in order to
facilitate the detection of exact events as in video surveillance
applications. Further improvement was made by combining the
regular event with local dispersion, since we found a significant
overlap between them.

As a fourth layer of comparison, in the proposed approach,
it was assumed inherently that the final decision on the events
will be made by the end users depending on the events
that they are interested by giving priority to those events
among others. However, if the end users are not acquainted
or unable to interpret the crowd events either because they do
not have experience or due to complexities in deciding, then
the system itself requires to provide a single output based on
the crowd events. Moreover, this affects complete automation



TABLE IV. C OMBINED CONFUSION MATRIX FOR FOUR CROWD

EVENTS (MERGING, SPLITTING, LOCAL DISPERSION AND EVACUATION).

Merging Splitting Dispersion Evacuation
Merging 0.56 0.22 0.08 0.14
Splitting 0.35 0.48 0.03 0.14

Dispersion 0.03 0.03 0.66 0.28
Evacuation 0.06 0.16 0.00 0.78

that is envisaged in visual surveillance and is a critical step
that has been addressed for the first time. Investigating on
this, we modeled events such that the walking–running events
were considered to be primitive events (as mentioned in
Section IV-A) and the other four events to be derivative of the
primitive events. In particular, the merging events and splitting
were conditioned by walking events. Likewise, the dispersion
events were conditioned byslow walking instead of walking
and evacuation events byspeed running instead of running.
The result of this is tabulated in Table IV. It is evident from
the Table IV that there is a slight performance deterioration in
merging and splitting events because of change in probability
conditioned compared to Table I–(b). The confusion between
merging to dispersion (0.08) and evacuation (0.14) is less.
Likewise, the detection from splitting to dispersion (0.03) and
evacuation (0.14) follow the same trend. Although there is
some confusion from dispersion to evacuation (0.66 to 0.28),
there is a clear distinction of evacuation (0.78). The confusion
between dispersion to merging (0.03) and to splitting (0.03)
are nominal. Similar trend is observed between evacuation to
merging (0.06) and splitting (0.16). The inefficiencies in the
proposed model in detecting merging and splitting events are
largely due to occlusions.

In the proposed method we consideredt = 5 for all crowd
event detection purposes, which was chosen empirically. This
is the main contributor in detection of actual events as wellas
detection delay. From the Table II, we observe that there is a
maximum delay of4 seconds between the actual start of an
event and the detection. The same was reported between event
occurrence and detection in all cases across different camera
views (View-001—View-004). The start of an event may be
slightly delayed because of camera views and occlusion. The
detection delay is the delay incurred by the model (time-
window) and not the computation delay. Previous works did
not mention the delay at the start and the end timings of events.
Optical flow values vanish for a static crowd in the scene in
which case we used Gaussian Mixture Model (GMM) [31]
for background modeling followed by optical flow for crowd
detection. Future work in this direction includes derivation of
efficient velocity vectors in crowded scenes without tracking
on manifolds. A further improvement in processing and feature
space can be brought in with the help of manifold learning
while detecting the events.

Riemannian metric provides a system independent structure
tensor that aids in computing the geodesic lengths. All tensors
for that matter are co-ordinate independent. Furthermore,cal-
culus of variations has been used since many centuries as a
tool to measure the nonlinear structure of the data. Application
of nonlinear methods helps to uncover the geometric structures
that otherwise would be compromised due to linear subspace
projections. Hence, in this work, Riemannian metric has been
used to preserve those nonlinear geometric objects and their
shapes independent of coordinate system.

Use of texture properties in combination with motion fea-
tures may prove to effective in some instances [27]; however,
the interplay of texture and motion features at the base of
the feature extraction and their dynamics in relation to crowd
events is still unexplored and requires further research in
this direction. Moreover, the handling of occlusions using
the texture methods utilizing the regression approaches have
been in the literature for sometime now, but unraveling the
supervised concept from the texture regression and devising the
unsupervised/semi-supervised interactions of texture models
and motion features maybe of aiding in analysing the occlusion
states. Occlusion handling is beyond the scope of this work
and a thorough analysis in this is yet to be conducted. The
future work will also include the use of texture features and
the occlusion handling mechanism to ameliorate the existing
performance.

VI. CONCLUSION

Crowd event detection and classification is key to under-
standing behavioural characteristics of a crowd. Of the many
applications associated with the crowd events, automated video
surveillance is an important aspect of computer vision. In
this regard, we developed probabilistic detection of crowd
events (running, walking, merging, splitting, local dispersion
and evacuation) on Riemannian manifolds. Previous work used
supervised approach to detect and classify events. However,
our approach was semi-supervised and delivered superior
performance in selected cases. Importantly, the method also
enables identification of the specific timings associated with an
event. From an automated surveillance perspective, a simple
probabilistic approach is proposed in order to combine differ-
ent event probabilities with new results. Behaviour analysis,
which relies on merging/splitting and dispersion/evacuation
events can be enabled by our proposed approach.
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