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Abstract—Event detection in crowded scenarios becomes
complex due to articulated human movements, occlusions and
complexities involved in tracking individual humans. In this work,
we focus on crowd event (activity) detection and classificain. We
focus on active crowd (continuously moving crowd) events. iFst,
event primitives such as motion, action, activity and behaour
are defined. Furthermore, a distinction is made among event
detection, action recognition and abnormal event detectio. Fur-
ther, event detection and classification are defined on Rienma@ian
Manifolds that yields six different probabilities of the event
occurring. Using a new probabilistic approach, an automatd
event detection algorithm is proposed that temporally segmnts
the event using a novel framework. The results indicate that
the proposed approach delivers superior performance in sektted
cases and similar results in other cases, whilst the deteoti
model delay allows operation in near real-time. The Perfornance
Evaluation of Tracking and Surveillance (PETS) 2009 datadevas
used for evaluation. Existing crowd event detection approehes
used supervised approach, whereas we eschew semi-supezdis
approach.

I. INTRODUCTION

Analyzing events in videos is highly informative in leargin
behavioral characteristics of the objects. However, dietgc
and predicting events in videos is both exacting and chal-
lenging. Individual object detection and tracking in ifsis
a challenging task in multi-object scenarios and the dilfjcu
further escalates during crowded scenarios. In particaleant
detection in crowded scenarios becomes complex when faced
with articulated human movements and occlusions [1]. The (e) Local dispersion (f) Rapid dispersion (evacuation)
primary objective of the event analysis is to localize ther#8  Fig 1. Examples of crowd events - walking, running, crowdnfation
in space and time. Event detection can thus be SummariZQﬁﬁ]erging), splitting, local dispersion and rapid dispemsievacuation) from
to recognizing and detecting those patterns from the vide®ETS 2009 [2] dataset
data in conjunction with object detection. This work is a@ime

at detecting and classifying the crowd events (as shown in
Figure 1). as normal or abnormal. Some of the examples of automated

detection of abnormal/anomalous/unusual events can belfou
Human activity recognition has gained much importance inn [3], [4], [5], [6]. In [7], one can find a comprehensive
recent times especially at locations where people go abeirtt study of vision-based anomaly detection methods. Anomaly
daily activities (e.g. shopping malls), transits (e.gpaits), detection, in general, operates on temporal domain data to
public gatherings (e.g. sports or music events) and so oridentify the events.
There has been a surge in video event detection applications

in response to voluminous usage, distribution and sharing o, On the other hand, human action recognition require un-
videos (e.g. YouTube, Vimeo, VEVO and so on). Context-derstanding of both spatial and temporal characteridtidsal

based search, content-based video retrieval, video egent |'€Vi€ws of human action recognition can be found in [8], [9].

beling and video surveillance are some of these associated(hree-1evel hierarchical taxonomy based on object d&tct
applications of event detection. tracking and activity recognition was proposed in [10]. A

survey by Moeslundt al. [11] further elaborated on human
There has been ongoing research on abnormality/anomadletection, tracking and activity recognition. In [12], tfeeus
detection, where the system endeavors to classify the evenf the study was more on human motion representation. In




literature, the terms “actions” and “activities” are useder- as extraction of the frame-level semantiegy(hand-

changeably. Turaget al. [13] defined the contexts in which shaking between two actors at a particular frame).
these terms are used. In [14], Aggarwal and Ryoo categorized . , i
the human activities as gestures, actions, interactionsgarup e Actiity/Event - is the resulting consequence of
activities. spatio-temporal interactions among actors. This can
be regarded as extraction of the windowed, temporal-
In this work, we focus on crowd event (activity) detection level semanticsg(g. detection of start and end timings
and classification. The crowd events targeted are: running, of handshaking between two actors).

walking, crowd formation (merging), splitting, local dession . ) ) ) L
and rapid dispersion (evacuation)—(as shown in Figure 1). ® Behaviour - is a high-level representation of activities

Our approach to crowd event detection is different compared of actors. This can be accounted as the unconstrained,
to previous works (for which a detailed study is provided in temporal-level semantics of the actors and its scene
Section 11) in that we do not track individual people, instea (e.g. changes in actors’ behaviour before and after
we use motion patterns to recognize, detect and provide handshaking).

a probabilistic detection of crowd activities on Riemamnia
manifolds. Our work is further focussed on thetive crowd
(where the crowd is in motion) as opposed to shatic crowd
(where the crowd movement comes to a halt). Existing crow
event detection approaches used supervised approactgasher
we eschew a semi-supervised approach. Directional degat
and geodesic distances on Riemannian manifolds are us
for probabilistic detection of crowd events. Furthermose,
provide delay in detection of events for selected cases. T

To handle emergency events in crowded scenarios, An-
dradeet al. [16], [17], [18] proposed spectral clustering of
(gptical flow as features. An automatic model was extracted

y fitting an Hidden Markov Model (HMM) for each of
the video segments. Zhareg al. [3] used similar approach,
byt the normal events were first learned and later, using
Bayesian framework, the abnormal events were detectedeThe
happroaches, although applied to crowd, are indeed detb‘rtmin _
main contributions of this work are: (1) use of optical flow whether the event is normal or abnormal, but not on classifi-

features for event detection on Riemannian manifolds, (2§ation of crowd events.

semi-supervised approach to classification of crowd e\amds Recently, localized spatio-temporal based approaches are
(3) probabilistic detection of crowd events without ratki  seen to be promising in event detection. Using flow matching

Section |1 first provides the definition of motion, action, {chnique depicted in [19], [20] and combining shapes in a
activity and behavior, followed by in-depth review of crowd Volumetric setting, Keet al. [21], [22] prosed event detection
events. Section Il provides a brief introduction to Rieman Methods in crowded scenarios. Treinal [23] prosed spatio-
nian manifold and the problem formulation for crowd event!€mporal search paths in volumetric setting applied to demv
detection. Section IV develops the methods to probaigyi ~ Scenarios. However, these approaches are only applicable t
detection of the crowd events. The information about theAction recognition of an individual rather than event deoec
dataset and results are provided in Section V followed by°f the crowd.

discussion and conclusion. Agent-based modeling has been applied in many instances
to study the behavior of the interaction of people in be-
[I. RELATED WORK haviourial analysis. Ched al. [24] applied agent-based tech-
nique to detect queuing, gathering and dispersion everits wi
Much work has been conducted in event detection applicathe aid of tracking. It incorporates head features, teraplat
tions, yet only, limited focus has been devoted towards drow matching, Kalman filtering and a Support Vector Machine
event detection. It is worthwhile to note that event detecti (SVM) for object agent analysis.
in crowded scenarios differs from the crowd event detection
where the former refers to detection of events pertaining Garateet al. [25] used reference frame to extract motion in-
to individual subjects (such as running, walking etc) in theformation and 2-D Histogram of Gradients (HOG) descriptors
presence of multiple objects and possibly partially ocetlid @as features and are tracked to categorize the crowd events ap
whereas the latter refers to events associated with crowglied on PETS 2009 dataset. Utasial. [26] combined optical
(group of peop|e) movements. Additiona"y' there is lack ofﬂOW with statistical filtering to separate background arsbals
clarity among the terms activity, event and behavior—mordow-level features for probabilistic event recognitiomeTevent
often than not, these terms are used interchangeably. $n this classified based on evaluating the group membership of the
work, we follow the taxonomy laid down by Chaaracei ~mean probability of low-level features with that of traigiset.
al. [15], in which motion, action, activity and behavior have Chanet al. [27] utilized the dynamic texture model (generative

been organized in a hierarchy. We consider “event” to beProbabilistic model) was used to detect events considefiag
synonymous to “activity” in this taxonomy. sample output from a linear dynamic system as a video.

In a study by Benabbaat al. [28], optical flow was used
actor/objects in the scene. This includes movement ofo extract motion patterns and build a direction and magleitu

body parts with respect to a spatial location togethefModel for crowd event detection. It al. [29] performed the
with displacement of actor from one spatial location crowd event detection using the intersection of motion mect

to another against time. derived from_ Harris corner_point and Kanade—Lucas—Toma_\si
feature tracking. They classify the events based on theamoti

e Action - is considered as the interaction of the actorvector patterns at local intersection points in the spaag an

with surrounding actors/objects. This can be regardeanembership event voting. It is worth nothing that most of the

e Motion - is considered to be the movement of the



methods are supervised and use training data to classify the The crowd events — walking, running, crowd for-

events. mation, crowd splitting, local dispersion and evacua-
tion — are subdivided into three subsets aé =
I1l. PROBLEM FORMULATION ON RIEMANNIAN W,R}, B = {F,§}, andC = {D,&} and C =
MANIFOLD {(Ws, W, Wrw, Rer, Ryr), (f,Ss), (d,e)} and are brought

under a single sef as:
A topological spaceM is regarded as a manifold g

of dimensionn or n-Manifold if it is a Hausdorff space, C={AB,C} @)
Second Countable, locally EuclideaR’() and smooth (dif- ={(W,R),(F,S),(D,&)} (3)
ferentiable) [30]. The tangent spagM for a pointp € M, B o

can be considered as equivalence class of curves through p. = {(Ws, Waw, Wy, Rsr, Rpr), (f,55), (d,€)}  (4)
The partial derivatives provide the local coordinates ahipo , )
p. The D(t) : Tp,M — T,y is a linear map. On a A Walking and running events

finite-dimensional vector spadg, 1/, directional derivative on Intuitively, one of the key distinguishing characteristit
smooth functiomy(¢) such thaty(0) = p and¥, (¢) is the initial  hairwise walking—running events is the velocity vectorer F
velocity vector app € M in direction of unit vector. The union instance, we can safely assume that when we are walking,
(disjoint) of tangent spaces for gl € M forms the tangent \ye have a gait pattern that generates motion vectors tha has
bundle. A Riemannian metrig on a smooth manifolM is a  Gayssian distributio/ (-, oy ); likewise, for running event,
smoqthly varying inner-product on each of the tangent spacg,e distribution will beN (g, o), where uy and g are
and is given by: the mean length of the optical flow vectors for walking and
gp : oM X TyM — R (1)  running events respectively, amgy andor are the standard
deviations of length of walking and running events accaytjin
A Riemannian manifold M, g) is a smooth manifold\ to-  To support this claim, Fig. 2 shows the variations of the @ti
gether with Riemannian metric Video data can be considered flow vectors’ length. The standard deviation and the mean of
as a 6-dimensional manifold with = f(r, g,b,z,y,t) C R®  the motion vector lengths’ during the walking and running
and is assumed to be smooth (differentiable). Then, theovideevents from the PETS 2009 [2] dataset were computed. It is
event lies on an embeddedd submanifold,f(r,g,b,2,y),  evident that the mean of the length of optical flow vectors

parameterized by time. increase for running events. Further statistics such aslatd
deviation for each of the waveforms indicate that the wagkin
IV. METHODOLOGY and running events can be distinguished using the length of

.the optical flow vectors. This forms the fundamental basis fo

Before we proceed further, the crowd events as defined Nther events as well

PETS 2009 dataset are first defined below:
) ] ) Let M be a manifold of5 dimensions. At first, the
e walking (W)- is the event where objects move at gjrectional derivatives in the directions af and y cartesian
a particular velocity collectively, which is less than pjanes are computed using the standard bases orb-e
the velocity of the events defined in running. Further,manifold. This is tantamount to computing tangent vectors
subevents are defined such astanding (W), sow 7 a1 at different pointg € M on the5-D manifold. Here, the
walking (W, ) andfast walking (W;.,) for efficient  fynctional derivatives are assumed to be smooth functieh an
recognition and detection of events. Therefdré,=  that the optical flow vectors are assigned #eb manifold of
{We, Wew, Wyw} the 5-D manifolds. Tangent bundlEM = L,e p1, M. Using
e running (R) - is theevent where objects take spatial- the vectors over the bundle, the temporal variations are use

temporal paths that are faster than those described it recognize the walking and running events.

walking. Furthermoreslow running (R,,) and fast The distribution of the vectors are updated over time with
running (Ry,) are defined asubevents of running. 5 window measure (history) to compute the probability of
Hence,R = { Ry, Ry }. the walking and running events. Initially, the distributids

e crowd formation (merging) (F = {F;}) - is the assumed to be uniform and later the system is allowed to
event where the spatio-temporal analysis reveals tha@volve as per the new samples. The event is classified as

points. Additionally, the tendency of objects portray- ity distributions. The distribut.ion With_highest probatyil is
ing this phenomenon is categorized under this eventfeégarded the current event in the video scene. The model

o ) ) has the constraint of minimum number of samples required
e crowd splitting (S = {S;}) - is the opposite of crowd to compute the probability to avoid prejudiced output at the
formation. The objects in the scene would divergejnitialization stage. The probability of walking and rungi
from a single point or from multiple points. events are denoted Hr()V) andPr(R).

e local dispersion (D = {d}) - is a conditional event
where walking event is recorded in association withB. Merging and splitting events

crowd splitting. The key distinguishing character of merging and splitting

e rapid dispersion (evacuation) (¢ = {E.}) - a events is the temporal evolution of the distances between
conditional event where the running event is observedjroups of people. As the distance between groups increase,
in conjunction with crowd splitting. there is a very high likelihood that the people in the scene



Variations of Length of Optical Flow Vectors for Walking and Running Events
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Fig. 2. The standard deviation and mean of the length of theapflow vectors of the walking and running events for 14-1ew-001 of the PETS
2009 [2] dataset. Statistics for Mean (Std:0.0480, me@A22, maximum:0.0758); statistics for Std. deviation (&@495, mean:0.0272, maximum:0.4076).
The waveforms clearly show that the length of the optical filmetors can be used as key distinguishing feature.

are splitting and merging if the distance between them iRiemannian metric tensor is given by (assuming the curnees ar
decreasing. This has been the general approach so far admissible):

the literature. In this work, an additional constraint hagip

employed to decide with higher degree of certainty. In adlit b

to distances between groups, the directions of the vecters a biny, . def . .

also significantly important. Laiy /a G {7 (), 75 (1)) (©)

To start with, groups of people require to be first identified
and clearly demarcated. This is accomplished by identifyin where~ is the geodesic curve;, and b are the point on the
the points on the manifold\ that result in nonzero tangent tangent planes where spherical mean for each group has been
vectors. Except for noise generated due to image charstitsri  identified such that : [a, b] — R, i andj subscripts indicating
(quantization) and noise due to other isolated movemeunth(s different crowd groups.
as tree leaves, shadows), the majority of the tangent \&eater
due to movements of the people in the scene. The boundary of The distance between different crowd groups are computed
the movements on the manifaldl is found by using boundary for each frame using the temporal variations between the
conditions on theM. Isolated tangent planes are eliminated toframes. The direction constraint is added by computing the
remove unwanted noise. This establishes the boundariés Sugi\/ergence Considering radiussuch thatr is within OB at
that people in the video scene are identified. Secondly, tb finpoints on the manifold. The boundary points on the manifold
the distances between groups, the geodesic distance etwegetermine the extent of the group from the spherical mean.
groups are computed using tangent planes. A center of mashis is equivalent to finding the boundaries of the crowd
for a particular group of people is calculated to identife th groups from the centroid in 2D cartesian plane. Depending
tangent planes. This is achieved computing the sphericahme on whether the crowd motion is acting as source or sink, and

given by: the geodesic distance, the crowd events (merging—spljttire
determined. Fig. 3 shows the merging and splitting pattdfns
1 / £ dS(f) 5) the distance between the groups is increasing and the source
Wp_1 ’ patterns are identified using the temporal evolution, then t
9B(p,r) crowd event is regarded as splitting. If on the other hand,

the geodesic distance is decreasing and the motion from the
divergence is forming a sink at points on the manifold, then
the event is considered to be merging. In all other cases, the
crowd event is termed asgaoup movement. The probability of

The geodesic distance between the groups by utilizing thenerging and splitting events are denotedthyF) andPr(S).

wherep € U ¢ M € R", 9B is the boundary with radius, f
is the function issD parameter space,S denotes the surface
integral andw,,_; is the surface area.



Fig. 3. Merging and splitting of crowd groups. In the scemeré is white crisscrossed point in the middle of the sceme.(§) — the motion pattern indicates
that the crowd is merging, where the crowd group is acting asuace. (c), (d) — the pattern of crowd splitting, where th@ne groups are in effect sinking.
The arrows indicate the direction of movement. The arrovestlae output from the proposed approach. In the case of ngef@h and (b)], the crowds gather
at that point. On the other hand, the crowd starts to splinfthe same point in case of splitting [(c) and (d)].

C. Local di . d ti t TABLE I. CONFUSION MATRICES FOR CROWD EVENTS TESTED ON
- LO Isperson and evacuation events THE PETS 200DATASET[2]. (A)- THE CONFUSION MATRIX FOR
H H WALKING AND RUNNING EVENTS;(B)-THE CONFUSION MATRIX FOR
The |Ocal dlSp_erSK_)n event occurs When the CrOWd g.roups MERGING AND SPLITTING EVENTS AND (C) - THE CONFUSION MATRIX
move from a point in the scene towards outwards in all FOR DISPERSION AND EVACUATION EVENTS
directions while they are walking. This can be represented a
the conditional event given the people are walking and also
L W [ R F S D g
they are splitting and can be denotedras$D| )V, S). On other (W [ 076 024] [F [ 088 012] [D | 094 0.06
hand, the evacuation event is the conditional event giventh [ R | 037 063 | [ S | 04 | 060 | [ & | 0.35] 0.65
people are running and are splitting and can be denoted as (a) Confusion matrix (b) Confusion matrix () Confusion matrix
Pr(D|R,S). for walking and run- for merging and split- for local dispersion
ning events. ting events and evacuation events

Thus far, in this section, the crowd events were defined
on Riemannian manifolds. Optical flow features were used to
detect the crowd events. The detection of six crowd evewts aland end timings of the crowd events from the selected video

based on the probabilistic framework without tracking & th sequences. Figure 4 shows the corresponding temporaltoutpu
individuals. The classification of the events are based en thg,, the walking events a minimum delay of one second and

distribution of the probabilities for each events. a maximum of4 seconds were observed. Likewise, for the
running events, a minimum o seconds and a maximum
V. RESULTS AND DISCUSSION of 4 seconds delay were recorded. In the case of merging

In this work, PETS 2009 [2] has been used for identifying@"d splitting events for View-001 (timestamp : 14-33), a
six crowd events. This is the only dataset where the event¥/0 Seconds delay in detecting merging events and a second
are clearly manifested into six crowd events. The dataset wad€lay in splitting events were registered. Both, dispersio
manually annotated to find the events as the ground trutiNd evacuation events were reported by one second delay in
Later, this was used to compare with the results availablafr detecting the events.
the proposed method. The proposed method was implemented

. . . . _hi TABLE II. C OMPARISON OF START AND END TIMINGS(IN SECONDS
In OpenCV23 On a Vlrtu.al BOX LanX maChIne (32 blt UbUntU FPF7)OF CROWD EVENTS DETECTION RESULTS WITH GROUND TRUTH
12.04 LTS_) equipped with.5GB RAM and InteP i7 — 2600 FROM SELECTED VIDEO SAMPLESTHE RESULTING TEMPORAL GRAPHS
CPU running aB3.4 GHz HAVE BEEN PROVIDED INFIGURE 4.
Ground Truth Detected
A. Performance Video sequence [Start-End] [Start-End]
) (in seconds) (in seconds)
The performance results have been presented in four layers Walking [ Running [ Walking [ Running
of assessment. At the first layer, th 14-16, View-001 | 10-6] [6-15] [0-7] [7-17]
. yer, the results have beenrgesse [3-24] (20 31] r726] [28-31]
based on the classification results. Table | provides the con 14.33 View-001 |_Merging Spiitting Merging Splitting
fusion matrix for all the six crowd events. From Table 1—(a), ’ [0-29] [48-53] [0-27] [49-53]

. f s . . Dispersion | Evacuation | Dispersion | Evacuation
the walking events were correctly identifi@d% of the times, 14-33, View-001 oy [8-53] 0-29] [49-53]

with an error 0f24% as running. On the other hané3% of
the running events were correct aBd% of the events were
identified as walking. From Table 1—(b), we see that mergin
events were matching with the expected results uB&.
Neverthelessf0% of the splitting events matched with the
true crowd splitting events. From Table 1—(c), dispersiveargs
were94% of the times matched with ground truth; evacuation
events matched up ©5%.

As a third layer of comparison, the events were compared
% terms detection rates utilizing the precision and recedh-
sures. Table Il provides the comparison of different mdtho
to detect crowd events. In this work, the output is shown for
View-001 of the PETS 2009 dataset [2]. Leveraging upon
the domain knowledge, pragmatic knowledge and the expe-
rience from other video surveillance projects, we condiicte

A second layer of comparison in terms of the delay inan experimental evaluation of events detection from déffier
the detection is provided in the Table Il for View-001. The views and found that View-001 best captures the crowd events
results in Table Il provides a comparison of detection oftsta The parameters used in the View-001 were applied to other



TABLE III. C OMPARISON OF CROWD EVENT DETECTION RESULTS

Walking
Statistical Motion Our
z Crowd Event | Measure Filters [26] | Pattern [28] | Approach
) Walkin Precision - 0.97 0.61
£ 9 Recall - 0.96 0.75
& Runnin Precision 0.99 0.75 0.78
s . - = - p P = 9 Recall 0.99 0.81 0.63
Time (in seconds) Merging ;;ec(gilon : 8‘512 822
Running Splittin Precision 0.65 0.47 0.66
r ‘ ‘ ‘ ‘ piting Recall 1 0.47 0.6
Zz o8rp Dispersion Precision - 0.67 0.9
3 ol P Recall - 0.45 0.94
s %I Evacuation Precision - 0.69 0.75
£ 02 Recall - 0.82 0.65
0 5 10 15 20 25 30 35
Time (in seconds)
(a) Dataset: 14-16, View-001, number of frames=223, fps=7 running events’ performance is equally well compared to the
other methods (precision of 0.61 and 0.78, recall of 0.75 and
Merging 0.63). Similarly, splitting and evacuation events maiméagi
their performance (precision of 0.66 and 0.75, recall of 0.6
and 0.65).

Probability

Firstly, from the Table Ill we observe that, the proposed
5 " pos - p p o approach is comparat_)le to the existing approaches. Altoug
Time (in seconds) the detection of walking and running events is slightly low,
Splitting splitting and evacuation moderately good, merging andedisp
sion are well captured compared to others. One of the pessibl
reasons for low detection rates is that the estimation afoig/
vector based on optical flow during crowded scenarios poses
some limitations. This can be improved with use of group

Probability

0 10 20 20 20 50 - tracking techniques to estimate group velocity. Also, i€ th
Time (in seconds) tracking algorithms are lightweight and sufficiently fatten
(b) Dataset: 14-33, View-001, number of frames=377, fps=7 region-based optical flow can be implemented to improve the

running and walking events.

Local Dispersion

‘ ‘ ‘ ‘ : . Secondly, it is important to note that the proposed approach

08| ] outperforms (in merging and dispersion events) whereiagist
oal | methods did not prove to be efficient. One of the reasons for
o2 ] this performance is the incorporation of temporal tangenti

‘ : : : ‘ gradients. Existing methods used the training set to aehiev

Probability

0 10 20 30 40 50 60 . X i . ;
Time (in seconds) higher detection rates. Our final goal is to design automated
Rapid Evacuation event detection model by reducing human intervention in

the detection of crowd events. From a video surveillance
perspective, merging and dispersion are more important for
behavioural analysis than merely walking and running exent

For instance, in the event of crowd panic in response to

Probability

0 10 20 % a0 50 0 possible injury or threat to human life at a stadium, then our
Time (in seconds) probabilistic model indicates this trend immediately, e¥hi

(c) Dataset: 14-33, View-001, number of frames=377, fps=7 is an indispensable model compared to existing methods.

Fig. 4. Demonstration of detection of crowd events. Refeffable Il for ~ Previous methods combined all events, except running and
delay in detection of events in the above results. walking into a single class. We separated the mergingtisyit

events from local dispersion/evacuation events in order to
facilitate the detection of exact events as in video suleveile

. . applications. Further improvement was made by combiniag th
three views. Thus the proposed method is termed as SerQ’egular event with local dispersion, since we found a sigaift

supervised. The results in the Table Il is the combine
results of all the different views. The comparison is coriddc overlap between them.
with statistical filters [26] and motion pattern [28]. In [R6 As a fourth layer of comparison, in the proposed approach,

background modelling has been used followed by optical flowit was assumed inherently that the final decision on the svent
In [28], motion pattern from optical flow is used for event de- will be made by the end users depending on the events
tection. Since, our method uses optical flow, these two naistho that they are interested by giving priority to those events
have been provided for comparison and analyses. From themong others. However, if the end users are not acquainted
Table 111, it is evident that merging and dispersion events a or unable to interpret the crowd events either because they d
best detected using the proposed approach with a precisiarot have experience or due to complexities in deciding, then
of 0.85 and 0.9 respectively; likewise, the recalls were80.8 the system itself requires to provide a single output based o
and 0.94 accordingly. Other pairwise events such as walkingthe crowd events. Moreover, this affects complete autamati



TABLE IV. C OMBINED CONFUSION MATRIX FOR FOUR CROWD

EVENTS(MERGING, SPLITTING, LOCAL DISPERSION AND EVACUATION). Use of texture propertles in combination with motion fea-

tures may prove to effective in some instances [27]; however

- Mgrgigg S%”tztizng Disg%'gion EV%CTZ‘UO“ the interplay of texture and motion features at the base of
erging . . . . . . . . .

Splitting 035 048 003 014 the feature extraction and their dynamics in relation tovcto

Dispersion | 0.03 0.03 0.66 0.28 events is still unexplored and requires further research in
Evacuation | 0.06 0.16 0.00 0.78 this direction. Moreover, the handling of occlusions using

the texture methods utilizing the regression approaches ha

. ] o ) . N been in the literature for sometime now, but unraveling the
that is envisaged in visual surveillance and is a criticapst supervised concept from the texture regression and deise
that has been addressed for the first time. Investigating opnsupervised/semi-supervised interactions of texturelaiso
this, we modeled events such that the walking—running eventand motion features maybe of aiding in analysing the ocotusi
were considered to be primitive events (as mentioned intates. Occlusion handling is beyond the scope of this work
Section IV-A) and the other four events to be derivative & th and a thorough analysis in this is yet to be conducted. The
primitive events. In particular, the merging events andttspy  future work will also include the use of texture features and

were conditioned by walking events. Likewise, the disgersi the occlusion handling mechanism to ameliorate the exjstin
events were conditioned byow walking instead of walking  performance.

and evacuation events bgpeed running instead of running.
The result of this is tabulated in Table IV. It is evident from VI,
the Table IV that there is a slight performance deterioratio . o

merging and splitting events because of change in probabili Crowd event detection and classification is key to under-
conditioned compared to Table I-(b). The confusion betweegtanding behavioural characteristics of a crowd. Of theyman
merging to dispersion (0.08) and evacuation (0.14) is lessaPplications associated with the crowd events, automatebv
Likewise, the detection from splitting to dispersion ().e&d  Surveillance is an important aspect of computer vision. In
evacuation (0.14) follow the same trend. Although there ighis regard, we developed probabilistic detection of crowd
some confusion from dispersion to evacuation (0.66 to 0.28)events (running, walking, merging, splitting, local disgien
there is a clear distinction of evacuation (0.78). The ceioiu ~@nd evacuation) on Riemannian manifolds. Previous worll use
between dispersion to merging (0.03) and to splitting (p.03Supervised approach to detect and classify events. However
are nominal. Similar trend is observed between evacuation tour approach was semi-supervised and delivered superior
merging (0.06) and splitting (0.16). The inefficiencies et Performance in selected cases. Importantly, the methaal als

proposed model in detecting merging and Sp“t“ng everds arenables identification of the SpeCifi_C tlmlngS aSSOCi_a'[EIU Wn
largely due to occlusions. event. From an automated surveillance perspective, a simpl

probabilistic approach is proposed in order to combineediff

In the proposed method we considered 5 for all crowd  ent event probabilities with new results. Behaviour arialys
event detection purposes, which was chosen empiricallis Thwhich relies on merging/splitting and dispersion/evaiumat
is the main contributor in detection of actual events as @&ll events can be enabled by our proposed approach.
detection delay. From the Table I, we observe that there is a
maximum delay of4 seconds between the actual start of an VII.
event and the detection. The same was reported between event _ ) ) .
occurrence and detection in all cases across differentrzame  1his work is partially supported by the ARC linkage
views (View-001—View-004). The start of an event may beProject LPL00200430, partnering the University of Melbo_urne,
slightly delayed because of camera views and occlusion. Thielbourne Cricket Club and ARUP. Authors would like to
detection delay is the delay incurred by the model (time-thank representatives and staff of ARUP and MCG.
window) and not the computation delay. Previous works did
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A CKNOWLEDGEMENT

not mention the delay at the start and the end timings of svent
Optical flow values vanish for a static crowd in the scene in [q]
which case we used Gaussian Mixture Model (GMM) [31]
for background modeling followed by optical flow for crowd
detection. Future work in this direction includes derigatof [2]
efficient velocity vectors in crowded scenes without tragki
on manifolds. A further improvement in processing and fematu
space can be brought in with the help of manifold learning
while detecting the events.

(3]

Riemannian metric provides a system independent structurd?!
tensor that aids in computing the geodesic lengths. Alldens
for that matter are co-ordinate independent. Furtherntaie,
culus of variations has been used since many centuries as Bj
tool to measure the nonlinear structure of the data. Apfitina
of nonlinear methods helps to uncover the geometric strestu
that otherwise would be compromised due to linear subspac?6
projections. Hence, in this work, Riemannian metric hasbee ]
used to preserve those nonlinear geometric objects and thei
shapes independent of coordinate system.
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