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Abstract— A seizure is caused due to sudden surge of electri-
cal activity within the brain. There is another class of seizures
called psychogenic non-epileptic seizure (PNES) that mimics
epilepsy, but is caused due to underlying psychology. The
diagnosis of PNES is done using video-electroencephalography
monitoring (VEM), which is a resource intensive process.
Recently, accelerometers have been shown to be effective in
classification of epileptic and non-epileptic seizures. In this
work, we propose a novel feature called histogram of oriented
motion (HOOM) extracted from accelerometer signals for
classification of convulsive PNES. An automated algorithm
based on HOOM is proposed. The algorithm showed a high
sensitivity of (93.33%) and an overall accuracy of (80%) in
classifying convulsive PNES.

I. INTRODUCTION

The current method to diagnose epilepsy is to use
electroencephalography (EEG). However, there are certain
seizure types that do not show typical seizure related activity
on EEG and are classified as psychogenic non-epileptic
seizures (PNES). Jones et. al. [1] have shown that correct and
early diagnosis of PNES is a critical problem. 10% to 40%
patients referred to hospitals as having ES are found to be
having PNES. Moreover, correct diagnosis of PNES is often
delayed by (µ 5.6 & σ 7.7 years) and patients having PNES
are continuously treated with anti epileptic drugs, which have
serious teratogenic effects.

The gold standard to diagnose PNES is video electroen-
cephalography monitoring (VEM). One of the vital param-
eters observed during VEM is the stereotypical movement
of the limbs during seizure. Thus, making limb movement
analysis an imperative step in the diagnosis of convulsive
PNES. VEM being a resource intensive process, triggers the
need for an alternative method of PNES diagnosis.

Nisjen et. al. [2] has demonstrated the use of 3D ac-
celerometer for detection of motor seizures with good accu-
racy. They performed time-frequency analysis of accelerome-
try data for detection and classification of myoclonic seizures
using data recorded from the limbs and chest of the patient.
Becq et. al. [3] showed that different patterns corresponding
to seizures are present on the accelerometer data. They have
shown the use of entropy based features extracted from
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the norm of accelerometer data, in automated detection and
classification of Tonic-Clonic seizures. Cuppens et. al. [4]
showed the use of accelerometer based device for detection
and classification of nocturnal hyper-motor seizures from
normal moves, using an algorithm based on novelty detec-
tion. Beniczky et. al. [5] have shown that PNES and ES
can be differentiated using sEMG data by features based on
amplitude, frequency, coherence and duration of the silent
periods.

In this work, we have considered only convulsive seizures.
The classification and detection of convulsive PNES are
mentioned rarely in the literature. Recently Bayly et. al. [6]
has demonstrated that convulsive PNES can be differentiated
from convulsive ES using short time Fourier transform
(STFT). They showed that the variation of dominant fre-
quency over the course of an event is more stable during
convulsive PNES whereas the dominant frequency contin-
uously evolves during an ES. In this paper, an approach
for classification of convulsive PNES using a novel feature
called histogram of oriented motion (HOOM) is presented.
This approach is one step in the development of a wearable
ambulatory monitoring system for diagnosis of PNES.

II. METHODS

A. Experimental Design

Two hand held devices with MEMS accelerometer sen-
sor were used for data collection. The devices were time
synchronized with VEM setup in order to ensure exact com-
parison and analysis. The devices were strapped on the wrist
of patients. A total of 34 convulsive events were recorded,
which included 19 PNES and 15 ES events. All the events
were annotated by expert neurologists and their classification
is considered as the ground truth. Table I shows the patient
demography and event statistics. Royal Melbourne Hospital
ethics committee approval (HREC Project 300.259).

TABLE I: Table shows the demography of the patients.

Demography ES PNES
Patients 9 6

Number of events 15 19
Age 29.11 ± 12.04 34.66± 15.16

Male:Female 4 : 5 1 : 5

Duration of events (seconds) 110.00±112.78 225.00±191.90

The diagnosis of convulsive PNES is based on the stereo-
typical movement of limbs during seizure. The movement of
the upper limb during a convulsive seizure can be represented



as movement about a fixed ball and socket joint at the
shoulder. Thus, the movement pattern can be represented by
a trajectory of varying radial distance from a fixed point
(i.e. shoulder joint) in a spherical co-ordinate system. The
analysis of the pattern of movements is done by obtain-
ing histogram of the points representing the trajectory in
spherical co-ordinate system. Therefore, the feature vector
derived from the histogram of points in the spherical co-
ordinate system is given the name “histogram of oriented
motion (HOOM)”. Histogram with varying bin resolution in
short time windows of 2.56 seconds over the entire seizure
duration are calculated and analyzed. We then calculate
the variation along every bin of histogram over the entire
seizure duration, which is then used as a feature vector for
classification of PNES. The proposed methodology is shown
in Fig. 1.

On-device 
pre-processing

Pre-processing A

A
Cartesian to spherical 
co-ordinates (r,θ,�)

HOOM with 2◦, 5◦,
10◦ and 30◦ resolution

COV 
features

PNES 
or ES

Fig. 1: Flowchart describing the methodology for PNES
classification.

B. Pre-Processing

The accelerometer data was collected with a sampling
frequency of 50 Hz. The data is analyzed in short time
windows of 2.56 seconds epochs with 50% overlap. In every
time window, data is first filtered using an activity filter,
which filters out any activity below ±0.2g as subtle activity.
Then, a Butterworth 6th order band-pass filter with 2 − 25
Hz as the cut-off frequency is applied [6].

Accelerometer data in every time window is then con-
verted from Cartesian to spherical co-ordinates. Every point
in the spherical co-ordinate system is represented by a radial
distance r, the polar angle θ representing the inclination
from the reference plane and the azimuthal angle ϕ repre-
senting the angle between the reference axis and orthogonal
projection of the point on the reference plane. Equations
r =

√

x2 + y2 + z2, ϕ = tan−1 y
x

and θ = cos−1 z
r

are
used for converting Cartesian to spherical co-ordinates. Fig. 2
shows the accelerometer data in spherical co-ordinate system.

C. Feature Extraction

Histogram of Oriented Motion (HOOM): The motiva-
tion behind the work comes from the use of the histogram
of oriented optical flow (HOOF) and histogram of oriented
gradient (HOG) in detection of humans in image process-
ing [7]. The challenging task in automated classification of
convulsive events lies in detecting features which can capture
the movement pattern of the limbs. Several features in time,
frequency and wavelet domain have been proposed earlier
to identify ES [4]. However, to discriminate between two
seizure types a feature set which can capture the movement
patterns in PNES and ES will be a differentiating feature.

Histogram of spherical co-ordinates was used to capture the
variation in movement pattern.

Seizure events in every 2.56 second window are divided
into bins of 2◦, 5◦, 10◦, and 30◦ resolution from −180◦ to
180◦ respectively for θ and ϕ. The radial distance is also
divided into bins of length 180, 72, 36, and 12 respectively.
Thus, in every window of 2.56 seconds the variation or the
evolution of θ, ϕ and radial distance with time is obtained
as shown in Fig. 3. As stated earlier the temporal evolution

(a) ES event

(b) PNES event

Fig. 3: Histograms for (a) ES and (b) PNES shown for three
windows of 2.56 seconds epoch (Left-Right):for both (a)
& (b) (Row 1) ϕ with 10◦ resolution (Row 2) θ with 10◦

resolution (Row 3) radial distance r.

of PNES events is more stable in time (i.e. the coefficient
of variation is less) when compared to ES events. Thus,
the coefficient of variation is an important parameter to
capture the typical characteristic of the PNES and ES events.
Coefficient of variation of θ, ϕ and the radial distance r in
every time window is calculated for the entire event duration.
Equations 1, 2 and 3 show the input feature set.

Mθ =
(

COVθ1COVθ2 . . . COVθj

)

(1)

Mϕ =
(

COVϕ1
COVϕ2

. . . COVϕj

)

(2)

Mr =
(

COVr1COVr2 . . . COVrj

)

(3)

where, Mθ, Mϕ and Mr represents feature vectors of length
j, ∀j ∈ 180, 72, 36, 12 for bin resolution of 2◦, 5◦, 10◦,
and 30◦ respectively. COVθi , COVϕi

and COVri represents
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Fig. 2: Figure shows the cartesian (x, y, z) and spherical co-ordinate (r, θ, ϕ) in 2.56 seconds window: (a) typical convulsive
ES event (b) typical convulsive PNES event as depicted in a window of 2.56 seconds.

the mean value of coefficient of variation for θ, ϕ, and the
radial distance r in the ith bin of histogram. Features are
then normalized such that each attribute is centered to have
a zero mean and scaled to have a standard deviation of 1. The
features are then fed as an input to classification algorithm.

D. Classification using 2-norm soft-margin SVM

Support vector machine (SVM) is a binary classification
method, that shows good performance in pattern recognition
problems with excellent ability to prevent overfitting. SVM
maps the input features from Rd dimension to Rdh dimen-
sion using a linear or non linear kernel function φ(·) : Rd →
Rdh . The decision boundary separating the two classes
is learned in the form of a hyperplane. The optimization
problem in SVM is formulated as the maximization of the
distance separating the hyperplanes to maximize the buffer
region and minimize the training error. However, in real
life, applications perfect separation of the data is rarely
possible. When data is not linearly separable, SVM algorithm
is modified by introducing an error margin called the slack
term (ξ). Thus, the conditions for the hyperplane separating
the data is relaxed and the optimization problem for SVM is
as shown in equation 4.

min
ω,b,ξ

1

2
‖ω‖2 +

C

n

n
∑

i=1

l(ξk) (4)

subject to yi(ω ·xi+ b) ≥ 1− ξi, ∀ i ∈ 1, . . . , n. Where C

is a positive regularization constant and ξ is the slack term,
we used C = 1 and dot product as the kernel function. When
k = 2 the SVM is called the 2-norm soft-margin SVM.

SVM algorithm is well suited for classification of seizures
as it can handle moderately imbalanced data. Convulsive ES
are found to evolve with varying dominant frequency, thus
most of the ES events are detected as outliers in the data.
However, in SVM algorithm the hyperplane separating the
two classes is learned using the instances that are close to the
boundary. Thus, SVM algorithm is not affected by outliers
in the data even if they are large in number.

III. RESULTS AND DISCUSSION

New feature vector called Histogram of Oriented Motion
(HOOM) is proposed and the classification results with

different bin resolution are summarized in Table II. Five
fold cross-validation was used to validate and tune the
training model. The data was randomly divided into five
folds, with approximately equal class proportion in every
fold. The bin size in construction of HOOM features is an
unknown parameter. Hence, a detailed study was conducted
with different bin resolution as shown in Table II.

TABLE II: Classification performance of algorithm with
different bin sizes

Bin
resolution Sensitivity Specificity Accuracy f -score

2-degree 73.33% 73.33% 73.33% 0.71
5-degree 66.67% 76.67% 72.86% 0.67
10-degree 93.33% 70.00% 80.00% 0.83
30-degree 73.33% 61.67% 67.62% 0.65

The optimum bin resolution for HOOM is selected as 10◦,
as it shows a high classification accuracy. Table III shows the
five fold cross-validation results with 10◦ as bin resolution.
Our results showed that algorithm based on the proposed
feature - HOOM, can classify PNES from ES.

TABLE III: Five fold cross-validation results with bin size
as 10◦

Cross-
validation

Sensitivity Specificity Accuracy f -score

1st fold 100.00% 100.00% 100% 1
2nd fold 100.00% 100.00% 100% 1
3rd fold 66.67% 25.00% 42.86% 0.50
4th fold 100.00% 100.00% 100% 1
5th fold 100.00% 25.00% 57.14% 0.67
Overall 93.33% 70.00% 80.00% 0.83

A direct comparison of the results was not possible. As,
no algorithm addressing automated classification of PNES
and ES using accelerometry signals is reported in literature.
However, E. Pippa et. al. [8] in their recent work have
shown a similar classification of ES and PNES using EEG
signal. Since, in PNES there are no specific changes in the
EEG, these methods rely upon detecting the bradycardia
and hypotension associated characteristics of EEG signals
for classifying an event into PNES. However, our method is
based on the visual clues observed in limb movement during



VEM, which is used as one of the parameters to differentiate
PNES from ES by clinical experts [6]. Moreover, our algo-
rithm is based on accelerometry data recorded from wrist
of patients. Thus, having a potential to be implemented on
a wearable device. Table IV shows the comparison of the
classification model based on HOOM with those proposed
by E. Pippa et. al.

TABLE IV: Comparison of proposed classification model
with models using EEG signals as proposed by Pippa et.
al. [8].

Classification Model Sensitivity Specificity Accuracy
BayesNet 92.00% 78.00% 86.00%

RandomCommitte 88.00% 77.00% 83.00%

RandomForest 77.00% 70.00% 74.00%

HOOM 93.33% 70.00% 80.00%

The proposed algorithm resulted in an overall sensitivity
of 93.33% and an accuracy of 80%. A high classification
sensitivity and accuracy shows that HOOM features are able
to capture the typical characteristics of convulsive PNES and
ES. The results validate the hypothesis by Bayly et. al. [6],
that convulsive PNES and ES can be differentiated based
on their differing patterns of evolution with time. Bayly et.
al. used short time Fourier transform (STFT) in windows
of 2.56 seconds duration. In this work, an easy to compute
approach has been adopted. The Fourier transform has an
implicit assumption of signal stationarity and thus may not
be able to capture and differentiate convulsive PNES for
seizures of very short duration. However, HOOM features
capturing variations in the movement trajectory of the arm
during seizure are able to differentiate convulsive PNES for
seizures of very short duration as well. Which is reflected by
the high classification sensitivity of the proposed algorithm.
Thus, HOOM features are also able to embed the information
captured using Fourier transform as reported by Bayly et.
al. [6].

HOOM is a differentiating feature for classification of
PNES and ES. Fig. 2 shows the Cartesian and spherical co-
ordinates for a typical convulsive ES and PNES event in a
2.56 second window. It is visually clear from the movement
pattern represented by spherical co-ordinates in Fig. 2 that
the coefficient of variation will be very low for PNES in
comparison to ES. The maximum variation is captured by
θ as seen from Fig. 2. The patterns of evolution of θ for
PNES over time is shown in Fig. 2(b). It appears periodic
thus resulting in a low coefficient of variation for a PNES
event. θ for ES is shown in Fig. 2(a), where it evolves
unevenly and will have a high coefficient of variation. PNES
shows a stable evolution of motor manifestations over time
resulting in low coefficient of variation, whereas convulsive
ES evolves continuously over time and hence results in
higher coefficient of variation. This can also be observed
from the histogram of PNES and ES as shown in Fig. 3.
Spherical co-ordinate θ is the inclination of the resultant
from the z-axis or the sagittal plane of the patient. A higher
θ represents any movement away and forth from the sagittal
plane. This represents the combination of abduction and

adduction movements. The primary muscles in these types of
movements are affected by deltoid fibres, latissimus dorsi and
pectoralis major. These findings also correlate with Beniczky
et. al. [5], who have shown that PNES can be distinguished
from ES based on activation patterns of the deltoid muscles.
Our results suggest, that HOOM features are also able to
embed the information captured by sEMG to some extent.
Thus, the algorithm has the potential to be implemented in
a wearable device for early diagnosis of PNES. Future work
involves studying the correlation of HOOM with different
muscles involved in motion of arms, and implementing the
proposed algorithm in motor recovery of post acute stroke
patients.

IV. CONCLUSION

A novel algorithm based on the newly derived histogram
of oriented motion (HOOM) feature is presented for diag-
nosis of pseudo non-epileptic seizure. HOOM is derived by
transforming Cartesian co-ordinates to spherical coordinates.
The coefficient of variation of histograms with different
bin size for (r, θ, ϕ) is used to derive feature vectors for
classification of PNES. The algorithm resulted in a good
classification accuracy with a high f -score of 0.83 for the 10◦

bin resolution. A high f -score suggests good sensitivity and
specificity of the proposed algorithm. The HOOM features
are also able to encode the seizure information captured using
methods like STFT and sEMG. The encouraging results
demonstrates the feasibility of the proposed algorithm in
automated classification of convulsive PNES events using
a wrist worn accelerometer device.
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