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Abstract— Parkinson’s disease is a neurodegenerative dis-
order that results in progressive degeneration of nerve cells.
It is generally associated with the deficiency of dopamine, a
neurotransmitter involved in motor control of humans and thus
affects the motor system. This results in abnormal vocal fold
movements in majority of the Parkinson’s patients. Analysis
of vocal fold abnormalities may provide useful information to
assess the progress of Parkinson’s disease. This is accomplished
by measuring the distance between the arytenoid cartilagesdur-
ing phonation. In order to automate this process of identifying
arytenoid cartilages from CT images, in this work, a rule-based
approach is proposed to detect the arytenoid cartilage feature
points on either side of the airway. The proposed technique
detects feature points by localizing the anterior commissure and
analyzing airway boundary pixels to select the optimal feature
point based on detected pixels. The proposed approach achieved
83.33% accuracy in estimating clinically-relevant feature points,
making the approach suitable for automated feature point
detection. To the best of our knowledge, this is the first such
approach to detect arytenoid cartilage feature points using
laryngeal 3D CT images.

I. INTRODUCTION

Parkinson’s disease is a neurodegenerative disorder that
results in progressive degeneration of nerve cells. It is
generally associated with the death of neurons in substantia
nigra that results in deficiency of dopamine, affecting the
motor system. An estimated 10 million people suffer from
Parkinson’s disease in the world [1] and a significant propor-
tion of 70-89% of the Parkinson’s patients suffer vocal fold
abnormalities [2]–[4]. The vocal folds are a pair of muscle
bands covered by mucous membrane that appear horizontally
across the larynx and they come together (adduction) during
phonation and move apart (abduction) during respiration.
Some of the existing commonly known techniques to assess
the vocal fold dynamics are laryngeal electromyography,
laryngeal endoscopy, and laryngeal stroboscopy [5]. How-
ever, most of them are invasive, causing significant patient
discomfort, fail to capture the 3D movements of the vocal
folds and are subjective.

With rapid advancements in medical imaging technology,
Computed Tomography (CT) has become a reliable and non-
invasive modality to image the human organs. CT scanners
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with high temporal resolution capture the rapid fluctuations
in vocal fold movements during phonation. Distance between
arytenoid cartilages on these CT images has been used as
a feature to assess the hypokinetic nature of vocal fold
movement in cases of Parkinson’s disease [6]. However,
manual identification of arytenoids as in [6], is a highly sub-
jective and observer dependent task, making it error prone.
Therefore, an automated technique is required to analyze
CT images to provide reliable and consistent scores across
subjects and observers. However, the development of such an
automated technique involves challenges due to movement of
multiple structures in the frame, as phonation is a dynamic
activity involving the passage of air, which creates different
appearances on CT images. In addition, CT images are of
low resolution compared with other imaging modalities such
as MRI, making it more difficult to distinguish cartilages.

The work in [7] is the first known approach that aims
to develop an automated technique to extract vocal fold
planes from neck 3D CT images. It is assumed that there
is no coronal tilt during image acquisition and hence the
vertebral column is approximately orthogonal to the plane
of vocal folds. The anterior intersection point of vocal folds
is determined and the orthogonal plane to the vertebral
column passing through the Anterior Commissure (AC) is
identified as the plane of vocal folds. However, it is possible
that the vertebral columns are not always orthogonal to the
vocal folds due to the anatomical differences or due to a
coronal tilt in the data. In addition, it does not provide any
additional information apart from determining the location
of AC. This forms the motivation for our work to develop
a rule-based approach to detect clinically-relevant arytenoid
cartilage feature points.

II. PROPOSEDAPPROACH

We define feature points to be the most anterior points on
the arytenoid cartilages converging towards the airway. This
helps to determine points of interest from the arytenoids.
Distance between them is generally used to assess the vocal
fold abnormalities during phonation [6]. Steps involved in
the detection of feature points are outlined in Fig. 1 and are
described in the following subsections.

A. Dataset

Subjects were recruited from movement disorder clinic at
the Monash Medical Center, Australia [6]. All the subjects
were in age group of 50-90 years and some of them had
Parkinson’s disease for less than 6 years, whilst others did
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Fig. 1: Flow diagram of the proposed work for the detection offeature points: (a) axial plane of the 3D CT Data, (b)
localization of anterior commissure on the axial slice, (c)detecting the airway boundary, (d) cutoff pixels to perform
filtering, (e) detecting potential feature points, (f) finalfeature points after post processing.

not have any neurological or laryngeal disorders. All the
subjects were asked to make five short and fast /i/ phonations
and using a 320-CT scanner, the entire neck was imaged.
Resulting images were converted into NIfTI-1 images with
512 × 512 pixels size and 12-bit graylevels with Right,
Anterior, Superior (RAS) orientation. Subjects with blurred
and distorted images were excluded.

B. Anterior Commissure (AC) Localization

AC is defined to be the junction of the two vocal folds
in the anterior portion of the larynx. Locating AC from 3D
CT volumes of the subjects forms the basic initialization
step. Location of AC acts as a starting point to scan for
arytenoid cartilages converging towards the airway on either
side, which helps in detecting the feature points. We use the
approach developed in [7] to locate AC. Mid-sagittal plane
image of the scan data is extracted, which is used to compute
a distance profile of the glottis from the posterior border of
the neck. AC is defined to be the farthest point of the glottis
from the posterior border of the neck. Laryngeal anatomical
constraints ensure that the pairs of arytenoids cartilagesare
present close to the axial slice of AC in the caudal and cranial
directions. Once the AC is located, axial slices on either side
of the AC are scanned to locate the arytenoid cartilages to
detect the feature points.

C. Airway Region Extraction

The selected axial slice image (as described in II-B) is
first binarized by thresholding the original gray scale image.
This is achieved by applying thresholds in a selected window
of grayscale values. The lower and upper thresholds for the
current dataset were -1200HU and -700HU, respectively.
These thresholds were determined by using Otsu’s multi-
thresholding technique [8]. After binarization, 8-neighbor
connected component analysis is carried out to determine
the object regions in the image. The following anatomical
constraints were used to formulate rules to detect airways:

• airway region cannot be located too close to the bound-
ary of the image

• width and height of the airway region cannot be more
than 50% of the width and height of the image

• width and height of the airway region cannot be less
than 2% of the width and height of the airway region

Airway boundary is computed using the Moore-Neighbor
Boundary Trace algorithm [9]. Since the arytenoids are

always bounded by the thyroid cartilage on either side of the
airway, image containing the airway region that is bounded
by the thyroid cartilages on either side is extracted for further
processing.

D. Preprocessing

Boundary pixels of the airway as shown in Fig. 2, are
divided into two halves which come in contact with the
two arytenoid cartilages on the left and right portions of
the airway. Arytenoid cartilages are posteriorly attachedto
the vocal folds. Their movement during the phonation is
constrained to the posterior parts of the vocal folds. This
constraint is used to determine the cutoff locations (refer
to Fig. 2c) beyond which arytenoids do not move. Hence,
the pixels after the cutoff locations are filtered out. If we
consider the upper half of the airway (Fig. 2a), cutoff pixel
p is the pixel that satisfies the equation:

y(next(p))− y(p) > 0, (1)

wherey(p) is they coordinate of pixelp andnext(p) is the
pixel afterp, when the airway boundary is scanned in clock-
wise direction. If the lower half of the airway is considered,
p should satisfyy(next(p)) − y(p) < 0. Boundary pixels
after p are not considered for further processing.

E. Feature Point Detection

Feature point detection is carried out in the following two
steps:

1) Step.1: Arytenoid cartilages are hyaline cartilages
making them as distinct feature regions. Therefore, arytenoid
cartilages appear bright on the CT images, resulting in bright
pixels. As a result, distances of the airway boundary pixels
from the first bright pixels iny direction, away from the
airway are determined. A bright pixel is empirically defined
to be a pixel with an intensity of more than 100HU for the
aforementioned dataset. Letd be a function that computes
City Block distance between any two pixels. Letpi be the
ith boundary pixel andBi, corresponding bright pixel, then
pi is governed by:

pi =

{

potential feature point d(pi, Bi) > T

discarded d(pi, Bi) ≤ T,
(2)

where thresholdT is empirically determined.
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Fig. 2: Figure shows (a) detected airway outline on an axial slice, (b) image bounded by the thyroid cartilages for subsequent
processing, (c) cutoff pixels identified by clinicians to perform filtering.

2) Step.2: Arytenoids contain air inside the cartilages,
represented by negative intensities on the CT image. This
characteristic is used as a rule in this step. The regions of the
negative intensities are identified by calculating histogram of
intensities. LetB+ and B− be the bins with positive and
negative intensity edges, and letN(B) be the number of
pixels in a particular binB. Then theith boundary pixelpi
is governed by:

pi =

{

potential feature point N(B+

i
) < N(B−

i
)

discarded N(B+

i
) ≥ N(B−

i
)

(3)

F. Optimal Feature Point Detection

Pixels remaining after the previous steps are further clus-
tered to form different clusters. Any two consecutive pixels
that are separated by more than two pixels in either the
row or column directions are assigned to different clusters.
Means of distances of all the points of a cluster with respect
to both references points (Fig. 3a) are summed, which is
used as the final feature point. Cluster that has the minimum
value is considered to best represent the edge of the arytenoid
converging towards the airway. Centroid of this cluster gives
the required feature point. It represents the anterior point
on the arytenoid converging towards the airway and is a
useful feature to get information about the movements of
the arytenoids that support the vocal folds. The feature point
detection can be carried out from the multiple axial slices,
in which the arytenoids appear and can be interpreted by the
clinicians.

III. R ESULTS

The proposed approach is demonstrated on the CT data
of 12 subjects, from the dataset described earlier. Ground
truth was generated by marking the feature points manually.
Euclidean distance measure was used to compute the error
between estimated values and the ground truth. The imple-
mentations were performed in MATLAB 8.4 using the image
processing toolbox on Windows 7 (64-bit system) equipped
with an IntelR© i7-4790 CPU running at 3.60 GHz.

Table I shows the estimation feature point coordinates,
ground truths and estimated errors for 12 subjects using
the proposed rule-based approach. Our interactions with
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Fig. 3: Figure shows (a) reference pixels for clustering and
(b) interest points of arytenoid cartilages.

clinicians resulted in an agreement to have an error tolerance
of 15 pixels. From Table I, we see that for estimating lower
arytenoid feature points, the proposed approach produced a
maximum error of 21.54 pixels for Subject 2, whereas the
maximum error for upper arytenoid feature points was 21.8
pixels for Subject 6. Only two subjects (Subject 2 and 6)
had error over 15 pixel tolerance for estimating the lower
arytenoid feature points. On the other hand, only one subject
(Subject 6) had error more than 15 pixels in estimating
the upper arytenoid feature point. Therefore, the estimation
accuracies are83.34% and 91.67% for lower and upper
arytenoid feature points, respectively.

Fig. 4 shows the feature points detected using the pro-
posed algorithm for subjects 9 (Fig. 4a) and 12 (Fig. 4b),
respectively. From Fig. 4, it can be observed that despite
different airway width and cartilage appearances across the
two images, the proposed approach was still able to detect
the feature points reliably. This automated approach helpsto
understand the movements of the vocal folds and identify the
pathology due to the vocal fold disorders. Future directions
include to account for variations in the anatomies of the
arytenoids across multiple subjects by accounting for the
patient movements during phonation, and also to handle
movement artifacts.

IV. CONCLUSION

Analysis of vocal fold abnormalities is useful to assess the
progress of Parkinson’s disease. In the recent days, CT image



TABLE I: Comparison of estimated feature point coordinateswith ground truth. The lower and upper coordinates indicate
the feature points detected on arytenoid cartilages (either side of the airway).

Subject ID
Lower Arytenoid Feature Points Upper Arytenoid Feature Points

Estimated Ground truth Error Estimated Ground truth Error
[x, y, z] [x, y, z] (pixels) [x, y, z] [x, y, z] (pixels)

1 293,317,76 290,310,76 7.61 234,323,76 236,314,76 9.21

2 274,324,92 266,304,92 21.54 222,320,92 225,306,92 14.3

3 265,280,52 263,279,52 2.23 230,293,52 229,287,52 6.08

4 276,392,63 274,389,63 3.60 244,390,63 243,390,63 1.00

5 274,333,69 274,330,69 3.0 232,332,69 230,329,69 3.6

6 266,300,42 284,296,42 18.43 286,302,42 265,296,42 21.8

7 266,311,53 264,312,53 2.23 233,311,53 231,312,53 2.23

8 266,314,56 264,309,56 5.38 238,314,56 236,313,56 2.23

9 280,275,30 277,266,30 9.48 226,278,30 225,269,30 9.05

10 300,247,38 294,240,38 9.21 249,253,38 246,248,38 5.83

11 284,339,52 283,333,52 6.08 249,332,52 247,328,52 4.47

12 267,315,66 265,312,66 3.60 242,316,66 242,314,66 2.0

(a)

(b)

Fig. 4: Feature points detected using the proposed algorithm
for (a) subject 9 (also shows the upper and lower arytenoid
feature points) and (b) subject 12 marked on the axial slice
image of the larynx.

scanning has become a reliable and non-invasive modality to
image the human organs. Manual identification of arytenoids
is a highly subjective and observer dependent task, leading
to errors. Therefore, an automated technique is required
to analyze CT images to provide reliable and consistent

scores across subjects and observers. To this extent, a rule-
based automatic arytenoid cartilage interest point detection is
proposed. The proposed approach provided 83.33% accuracy
in estimating clinically-relevant feature points. To the best of
our knowledge, this is the first such automated approach to
detect arytenoid cartilage feature points using laryngeal3D
CT images.
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