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Abstract—Epilepsy is one of the most common neurological
disorders and patients suffer from unprovoked seizures. In con-
trast, psychogenic non-epileptic seizures (PNES) are another class
of seizures that are involuntary events not caused by abnormal
electrical discharges but are a manifestation of psychological dis-
tress. The similarity of these two types of seizures poses diagnostic
challenges that often leads in delayed diagnosis of PNES. Further,
the diagnosis of PNES involves high cost hospital admission and
monitoring using video-electroencephalogram machines (VEM).
A wearable device that can monitor the patient in natural setting
is a desired solution for diagnosis of convulsive PNES. A wearable
device with accelerometer sensor is proposed as a new solution
in the detection and diagnosis of PNES. The seizure detection
algorithm and PNES classification algorithm are developed. The
developed algorithms are tested on data collected from convulsive
epileptic patients. A very high seizure detection rate is achieved
with 100% sensitivity and few false alarms. A leave one out error
of 6.67% is achieved in PNES classification demonstrating the
usefulness of wearable device in diagnosis of PNES.

Index Terms—Accelerometry, epileptic seizure, psychogenic
non-epileptic seizure, wavelets, support vector machines

I. INTRODUCTION

Several neurological disorders affect the motor system in the
brain, resulting in deprivation of purposeful movement and
affecting normal interaction with the environment. Epilepsy
is one of the most common neurological disorders, affect-
ing about 50 million people worldwide [1]. Patients with
epilepsy suffer recurrent unprovoked seizures, which are a
transient neurological event caused by excessive or hyper-
synchronous neuronal network activity in the brain. Seizures
carry a significant risk of mortality and morbidity, and may on
occasions be prolonged and require emergency intervention.
One of the greatest disabilities associated with epilepsy is
the unpredictability of seizures—which can occur anywhere
and anytime. Seizures have been characterized by a variety of
symptoms [2]. Another class of seizures known as psychogenic
non-epileptic seizures (PNES) are involuntary events that pose
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diagnostic challenges due to the similarities with epileptic
seizures (ES). PNES, commonly called pseudo seizures, are
a relatively uncommon disorder with a prevalence of around
1 to 33 cases per 100,000 and they account for 5− 20% of
patients thought to have epilepsy [3]. There is potential for
severe harm from the adverse side effects or teratogenicity of
anti-epileptic drugs (AEDs) prescribed to PNES patients [4], as
well as morbidity and mortality from intubation for prolonged
seizures [5]. The inaccurate diagnosis may also result in
delayed psychological treatment for the issues underlying the
attacks, and social stigma associated with epilepsy. Previous
research has found that over 75% of patients who are diag-
nosed as having PNES on VEM had been referred with a
presumed diagnosis of epilepsy by their Neurologist [6]. It has
been reported that on average, patients experiencing PNES are
not correctly diagnosed until 7.2 years after the manifestation
of the seizures. Such a long delay prior to the diagnosis of
PNES clearly demonstrates the unsatisfactory nature of current
procedures for evaluating this important group of patients [6].

The diagnosis between PNES and ES is the electrical
discharge that can be monitored through a video electroen-
cephalogram monitoring (VEM). In-patient VEM is the gold
standard for distinguishing different types of seizures [7].
Although it has a high yield in diagnosis and management;
it is expensive, time consuming and labor and resource in-
tensive [8]. It also requires inpatient admission, which adds
a further burden on the health care system. Due to the
widespread use of VEM machines for seizure categorization, it
is safe to assume that visual cues (of motor seizures) captured
by an expert observer gives critical information on diagnosis
and treatment planning in addition to EEG signals. The videos
accompanying EEG clearly show the manifestation of distin-
guishable feature in motor activity. Any neurological problem
affecting the motor neurons will result in the manifestation
of the problem in one of the body parts, specifically in the
limbs that can be captured by an accelerometer sensor. Due
to economic feasibility and the tediousness of VEM, alternate
methods are being researched to differentiate PNES and ES.
In our previous work we have shown that manifestation of
epileptic and non-epileptic seizures is quite different in its
motor activity [9]. Therefore a motor activity monitoring
device should be able to distinguish between ES and PNES.

Unobtrusive and ambulatory monitoring get more impor-
tant in case of patients who suffer from nocturnal epileptic
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seizures. These patients are highly susceptible to injury or even
sudden death as the seizure goes unnoticed to the caregivers.
Hence, making automated detection of seizures a pivotal and
in many cases a life saving task. Clinical decision making
is a hot area in biomedical engineering and for automated
detection of seizures, the first and the foremost step is the
identification of the seizure event and activities which can
mimic seizure or activities of daily living (referred to as
normal activity in this work). The use of accelerometer for
the detection of epileptic seizures has been reported in [10].
It was found that it was possible to detect the stereotypical
patterns for myoclonic, clonic and tonic epileptic seizures
termed as simple motor seizures and distinguish them from
normal movement using 3D accelerometer attached to four
limbs and chest [10]. This work was extended further in [11],
where four different time-frequency and time-scale methods
were investigated. Cuppens et al. [12] have focused on the
identification of normal activity and activity that corresponds
to seizure. Results from the work of Becq et al. [13] is
promising, where they have shown that a high sensitivity and
specificity of 80% and 95%, respectively can be achieved
in the detection of generalized tonic-clonic seizures from
accelerometer data based on a simple entropy feature obtained
from the norm of acceleration. However, it can be inferred
from the results, that there is a slight overlap between the
seizure activities and other motor manifestations. This can
be due to reasons attributed to patient physiology, placement
of the sensor for data collection and the type of the activity
patient is doing. Another study shows that the accelerometer
can detect the nocturnal frontal lobe seizures with a high level
of sensitivity and specificity [14], and wearable accelerometer-
based kinematic sensors are successfully used as a body
sensor network for detection of the motor patterns of epileptic
seizures [15].

Recently, Ungureanu et al. [16] has proposed the use of a
different sensor modality for detection of nocturnal epileptic
seizures, due to ambiguity on the placement of the accelerom-
eter on the patient and to identify seizures that do not normally
manifest as motor seizures. However, for unobtrusive and
ambulatory monitoring of patients the challenge is to have a
device and a method with minimum number of sensors. This
reduces the power consumption and the patient endurance that
multiple sensors cause. In our work, we have focused only on
motor seizures. Patients with motor epileptic seizures are under
a higher risk of injury or harm during a ES or PNES event.
Therefore, requiring early and correct diagnosis for directed
treatment is essential.

The use of surface electromyography (sEMG) is also re-
ported in the literature as a viable method for development of
automated algorithm for detection of seizures. Patel et al. [17]
have shown the use of sEMG data collected in conjugation
with accelerometer data using a wearable sensor. They showed
that sEMG data aids in identification and discrimination of
activity of daily living from seizure events. Correct identifi-
cation of normal or activity of daily living is a critical step
for the development of an automated algorithm for seizure
detection as many activities of daily living contribute to false
alarms. Further, Conradsen et al. [18] have shown the efficacy

of sEMG in the automated detection of general tonic clonic
seizures (GTCS) with a very high sensitivity of 100% and a
specificity of 1 false detection per day.

Seizures can be broadly classified into two types — con-
vulsive and non-convulsive. Convulsive seizures causes invol-
untary contraction of muscles and can be visually observed.
Most of the work reported in literature as discussed in the
above paragraphs is targeted at detection and classification of
simple motor seizures. In our previous work [9] we proposed
an approach based on Short Time Fourier Transform of the
accelerometer data. The data was recorded using a wrist-
worn wired accelerometer device. It was observed that PNES
displays a stable dominant frequency during the course of
a seizure event. However, ES shows more variation in the
evolution of dominant frequencies. Motivated by the initial
results, an ambulatory convulsive seizure monitoring system
has been reported in this paper. A fully automated system for
detection and diagnosis of PNES has not yet been addressed
in the literature. In this regard, the system employs a wrist
worn accelerometer system that records motor activity. A
new algorithm for detection and classification of convulsive
seizures is proposed. The novel system is implemented using a
commercially available hand held device and tested on patients
undergoing VEM. The main contributions of this work are
summarized below:

1) Accurate detection of PNES based on the occurrence
of seizure is critical for avoiding unnecessary delay
in treatment. Correct diagnosis of PNES is reported
to be delayed by 7.2 years on average. An automated
system has been developed for identification of PNES
in convulsive patients using limb motion analysis.

2) Continuous and unobtrusive monitoring is a challenging
task due to the amount of data that is collected. A
new method for accurately identifying seizures from
accelerometer signal is proposed. The algorithm has
the ability to detect seizure like activity that is present
hidden inside vast amounts of normal data.

3) A new classification algorithm has been proposed for
classifying ES and PNES using time frequency analysis.
The algorithm is tested with good results on patient data
collected in a hospital setting.

II. METHOD

The proposed system consists of two stages, seizure detec-
tion and seizure classification, as shown in Fig. 1. The wrist
worn device is mounted on the patient continuously for several
days when the patient is under observation in Video EEG
Monitoring (VEM) system. The movement data is collected
uninterrupted over this period other than during the device
change over period that lasts a few minutes. Due to the large
volume of data collected, an algorithm for detecting seizures
accurately is developed in the first stage using time domain
features and k-means clustering. In the second stage, seizure
activities are classified into ES or PNES with the help of
discrete wavelet transform and support vector machines. In
this section, the details are presented.
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Fig. 1: Flow chart of the proposed method. The method consists of four stages of processing. In the first stage, data is collected
from wrist-worn accelerometer. In the second stage, a filter that eliminates small movements has been implemented as on-device
processing. Seizure detection is the third stage comprising of four steps - activity filter, time filter, extraction of time domain
features and clustering of detected features. In the final stage, the seizure is classified as Pseudo Non-Epileptic Seizure (PNES)
or Epileptic seizure (ES). For classification of events as PNES of ES, an initial pre-processing of the signals are performed
on the signals from seizure detection stage, followed by extraction of Wavelet features (db3, db5, coif3 and sym4) and then
classification using k-means and Support Vector Machines (SVM).

TABLE I: This Table highlights the overall number of patients who had seizures during the monitoring duration with the number
of ES, PNES and both ES and PNES patients. A total of 14 patients had convulsive events. Only patients with convulsive
events are shown with patient age and event duration represented as mean ± standard deviation. Number of males and female
patients and their respective percentages shown in brackets for each category.

Overall ES PNES Both ES and PNES
Patients 27 10 3 1
Observed events 85 21 13 –
Age 34.44±13.34 32.80±13.40 39.33±18.61 30.00±0.00
Male 8(29.6%) 5(50.00%) 0.00 0.00
Female 19(70.30%) 5(50.00%) 3 (100%) 1 (100%)
Duration of events (sec) 117±123 115±111.6 224±203.43 –

A. Data collection and processing

An ambulatory wireless system has been proposed that al-
lows continuous monitoring and in the subject’s natural setting.
A smart-device application was developed for collecting the
movement data. Apple iPod Touch with accelerometer sensor
was used for all our experiments. Two iPods (one for each
hand) were attached firmly to the patient’s wrists with elastic
armbands to prevent unintended movements. Each device
consisted of a MEMS accelerometer (±2.5g). A simple filter
to detect activity was used in order to conserve energy. The
device was changed every 12 hours due to battery drainage.
The raw accelerometer data was stored using flash memory on
the device and later transferred to the computer for analysis.
The sampling frequency of the data collected was 50 Hz and
each packet contained values along three axes and a time
stamp. The data was collected during 2012 and 2013 among
patients in the epilepsy video telemetry unit at the Royal
Melbourne Hospital in Melbourne, Australia, who experienced
motor seizures during hospitalization. Human Research Ethics
Committee approval was obtained from the Royal Melbourne
Hospital (HREC Project 300.259). The study was conducted
in keeping with the regulations established by the hospital.
During the stay in the hospital, the patients underwent VEM
continuously for at least three days, and at the same time,

the patients had an accelerometer device fitted firmly to both
their wrists. The devices were time synchronized with VEM
setup in order to ensure exact comparison and analysis, by
manually auto updating the time on both the devices from
same network. A lag of few milliseconds in registrations
of VEM and accelerometer device is permissible according
to clinical experts. Moreover, the EEG technicians manually
annotate the accelerometer data, for the different seizure types.
The EEG technicians performed the annotation without any
automated signal processing. The annotation was performed
by visual assessment of the accelerometer data using Matlab.
The EEG technicians reported that similar clues of seizure
like activity is present on accelerometer data as seen on
EEG during VEM. Patients were excluded from this study
for three reasons: (a) if the seizures were absent (i.e. no
movement) (b) if they suffered from significant underlying
psychoses (preventing informed consent) (c) the monitoring
was intracranial. Summary of the data collected is shown
in Table I. Out of a total 57 subjects recruited, 27 patients
had seizures during VEM recording. Using the VEM, 85
events were observed that included 34 convulsive events (14
patients) and 51 non-convulsive events (13 patients). This
work focusses on convulsive patients only as motor activity
monitoring is possible only if it manifests on a body part,
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hence, convulsive events are considered. Out of 14 convulsive
patients, 10 epileptic patients and three non-epileptic patients
were encountered. One patient had both epileptic and non-
epileptic seizure events. A total of 21 ES events and 13 PNES
events were identified using VEM. Based on the feedback
from the specialists, a minimum event length of 20 seconds
is considered in this work as an event. This resulted in a
reduction of the number of events captured by the device
and there are 14 ES events and 5 PNES events for detection
and classification. Although the number of events is lesser, it
should be noted that the analysis is performed on events of
different window lengths (five seconds in classification stage)
resulting in a sizeable number of samples. In effect, eight
convulsive patients are available for analysis with a total of
nineteen events. The mean duration of ES and PNES events
were 115 seconds and 224 seconds respectively. More details
about the data can be seen in Table I.

B. Detection of seizure events

Accurate detection of seizure events is the first step in anal-
ysis of the motor movement that comprises of vast amounts
of data. A simple time and frequency domain approach is
proposed for detection of seizure activity. There are three
possibilities of output at this stage: a) no activity; b) normal
arm movements; and c) seizure activity. The resultant signal
used at the first stage is calculated using R =

√
x2 + y2 + z2.

The resultant is then pre-processed using a simple activity
filter that declares all signals less than 0.2g as no activity
or normal activity. The value of 0.2g is empirically chosen
and is based on the lower bound of the collected seizure
data. Although, this value is heuristical, logically it is fair
to accept it due to the nature of the physiology of seizures.
Followed by the use of the threshold, the signal of 20 sec-
ond length with 50% overlap is filtered using a 6th order
Butterworth band pass filter with 2Hz and 25Hz as cutoff
frequencies. This will filter all spurious spikes and some of the
controlled arm movements, that is not the nature of epileptic
seizures. Cuppens et al. [14] have shown the use of such
pre-processing steps, where they have used low pass filter
with cutoff frequency of 47 Hz. Whereas, in our work we
have focused on a particular frequency range based on our
observations of dominant frequency of typical seizure events
from our previous work [9]. Seizure activities of minimum
length of 20 seconds are considered in this work and hence
the choice of 20 second windows are made. A Fast Fourier
Transform (FFT) of the filtered signal is calculated by dividing
the 20 second window into 20 blocks of 1 second each. The
magnitude of the dominant peak along with the corresponding
frequencies are calculated. A detailed analysis of the mean
and standard deviation of the magnitude and frequency is
performed. It is found that the normalized peak magnitude
of the data during the seizure has a lower bound of 0.009 and
the upper bound on the peak magnitude during normal activity
is several order lesser than 0.009. Hence, it is chosen as the
threshold in our activity filter. Further, it is observed that for
at least 10 seconds out of the 20 seconds window, the activity
is high in magnitude during the seizure, which is not the case

in majority of the normal activity. This will ensure all subtle
movements are excluded from seizure like activities, hence the
name activity filter. A similar observation has been made by
Cuppens et al. [12] in their very recent work, where they
have reported that activities which manifest for lesser than 10
seconds are most likely normal nocturnal movements. After
preprocessing, the filtered data now contains normal activity
that has significant acceleration in addition to seizures. As
mentioned earlier, only events that have a minimum duration
of 20 seconds are considered in our work. Followed by the
activity filter, we use the time filtering to remove normal and
seizure events that have duration less than 20 seconds. At
the end of time filtering, we are left with arm movements
that comprise of normal events and seizure events with the
number of normal activities significantly higher than seizure
activities. The thresholds are justified as we are not eliminating
any seizure like activity but only focus on removing very
obvious normal movements. In order to extract only seizure
events from this biased set, k-means clustering is employed
on time domain features that are extracted. The 15 time
domain features extracted include signal power, zero crossings,
energy, measures of central tendency (mean, median, mode),
measures of dispersion (inter-quartile range, standard devia-
tion, amplitude), skewness, kurtosis, entropy (Shannon, log
energy, norm, threshold). Features were calculated for signals
corresponding to x, y, and z axes of accelerometer and also for
the resultant signal R. In total we had a feature set comprising
of 60 features. Out of the 60 time domain features, signal
power, zero crossing and standard deviation were selected
as key features based on feature evaluation using variance
as the criterion in agreement with Cuppens et al. [14]. For
each subject, the duration of events is represented by time
window T = {t1, t2, . . . , tn|tI = 1 seconds}. The feature vector
for a particular subject comprising of tn windows is generated
using the 60 features. Let U = [u1,u2, . . . ,u60] represent the
feature vector for a particular subject and the corresponding
event. This is reduced to V = [v1,v2,v3], where v1, v2 and v3
correspond to the power, zero crossing and standard deviation
of the resultant.

k-means [19] is an unsupervised clustering algorithm that
classifies the multivariate data into k clusters, where the num-
ber of clusters k is known a priori. The intuition is to identify
k centroids based on the input data. The k centroids then form
the centroid of each cluster. Ideally, the centroids must be
far apart from each other and the data points are associated
with one of the nearest k centroids. The k-means clustering is
an iterative algorithm and thus the procedure of newly formed
clusters with k centroids are iterated until convergence (cluster
centroids become fixed and data points associated also become
fixed). This can be written as minimizing an objective function
as:

Q = argmin
k

k

∑
j=1

n

∑
i=1

∥∥xi− c j
∥∥2 (1)

where xi are the n data points and c j are the k cluster centroids.
In the present scenario, the data contain n observations for

a single subject. Each observation consists of three features.
These features must be divided into two clusters: normal
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events and seizure events. The k-means clustering will divide
the input vectors into a larger group of normal events and
another smaller group of seizure events as shown in Fig. 2.
In Fig. 2, ◦ represents the normal activity and � represents
the seizure events. As can be inferred from the Fig. 2, the data
is clearly divided into two distinct clusters and all the seizure
events corresponds to outliers in our data.
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Fig. 2: An example of k-means clustering using standard
deviation, zero crossing and power of the resultant acceleration
signal. ◦ - indicate normal activities and � - indicate seizure
events for patient no. 1. From the figure it is clear that standard
deviation, zero crossing and power are sufficient to cluster the
events as normal or seizure-like events.

C. Classification of Seizure into epileptic and pseudo non-
epileptic events

Our initial work as a proof of principle [9] demonstrated
the feasibility of differentiating ES and PNES using a single
stage frequency analysis. Using a wired accelerometer and
continuous collection of the data, the collected acceleration
signals were analyzed using a Fourier transform and the first
dominant peak was analyzed. It was found that the variation
of the first dominant frequency between patients with ES and
PNES varied considerably with high coefficient of variation in
dominant frequency of ES events as compared to PNES events.
In contrast to our earlier work, we use wireless accelerometer
that can be worn without any hindrance to normal activity.
Further, due to the nature of data pre-processing, the data
collected is accurate but sparse. As a result, the algorithm
based on FFT [9] proposed earlier is not robust. In order to
gain convenience in data collection, some sacrifice is necessary
in the quality of the data collected but we attempt to compen-
sate it by proposing a new algorithm based on time-frequency
analysis and support vector machine classifier. The classifier
is build using five fold cross-validation. Where four folds are
used for training the classifier and fifth fold is used to test
the model. This approach results in a completely automated
system that can detect seizure events and diagnose PNES
accurately that is a step further to what has been reported
earlier [9].

Extraction of Wavelet Features: Analysis of non-
stationary functions can be performed using mathematical
functions that allow simultaneous localization of interesting

patterns in time and scale. Wavelets belong to this class of
functions and they decompose the data into different frequency
bands. Each component is analyzed with a resolution matched
to its scale. They also offer important properties such as
linearity and orthogonality that can be used for implementing
the algorithm on wearable devices that are resource hungry
and work in real-time. The Discrete Wavelet Transform (DWT)
further enhances their use in DSP chips by operating on input
data vectors whose length is an integer power of two. A DWT
is calculated by filtering followed by down sampling by a
factor of 2 as shown in Fig. 3. It is clear from the Fig. 3
that wavelets provide multi-scale representation of the input
signal. In Fig. 3, the approximate coefficient a j and detailed
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Fig. 3: Shows the three level Wavelet decomposition. S is
the input signal; H is the high pass filter and L is the low
pass filter; ↓ 2 indicates down-sampling by a factor of 2. ai is
the approximate coefficient and di: detailed coefficient. In the
proposed work, six level Wavelet decomposition is performed,
resulting in an approximate coefficient along with six detailed
coefficients.

coefficient d j are calculated using equation 2 and equation 3
where, h and l are high pass and low pass filter coefficients.

a j+1[p] =
n=∞

∑
n=−∞

l[n−2p]a j[n] (2)

d j+1[p] =
n=∞

∑
n=−∞

h[n−2p]a j[n] (3)

Several mother wavelets with different orders were ana-
lyzed. Finally, a small subset of mother wavelets including
daubechies (db3, db5), coiflets (coif3) and symlet (sym4)
were empirically chosen for detailed analysis and validation
of the proposed method. Fig. 4 shows the decomposed signal
with 6 detailed coefficients and one approximate coefficient.
Using power as the criterion, detailed coefficients at level
2 (d2), 3 (d3) and 4 (d4) were chosen for further analysis.
In addition, the approximate coefficients (a6) after six level
wavelet decomposition was used. The entropy and power of
each 5 seconds window (with 50% overlap) in a seizure were
calculated for d2, d3, d4 and a6. The coefficient of variation of
power and entropy for each event was calculated and used as
a feature for classification. This resulted in feature vector of
length of eight made up of coefficients of variation in power
(d2, d3, d4, a6) and entropy (d2, d3, d4, a6).

Classification using unsupervised learning: Based on
our earlier work [9], we hypothesize that the coefficient
of variation of power and entropy in different frequency
bands should provide the basis for classifying PNES from
ES. As reported by Bayly et al. [9], PNES exhibit stable
dominant frequency during the course of the event (leading
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Fig. 4: Six levels of Wavelet decomposition shown for (a)
PNES, and (b) ES during respective events. In each of the
graphs, the first subgraph shows the input acceleration signals
corresponding to x, y, and z axes and the subsequent subgraph
show the resultant axis derived from x, y, and z axes. The
subsequent graphs show the six levels of detailed coefficients
and an approximate coefficient. The results were obtained
using the db5 coefficient.

to low coefficient of variation) as against evolving dominant
frequency in ES (leading to the high coefficient of variation).
In order to achieve this, k-means has been used with a
cluster center initialization algorithm (CCIA) [20]. Due to the
nature of k-means by using the random centroid initialization,
the algorithm fails to work consistently and also the data
characteristics are not efficiently utilized. Density based multi
scale condensation strategy has been used in this work [20]
by using a derived attribute of mean and standard deviation of
the data. CCIA generates ḱ clusters where ḱ > k. The idea of
the algorithm is to merge nearby clusters from the pool of ḱ
clusters based on Euclidian distance between cluster centers.

The new cluster centers formed by this procedure will be used
as initial cluster centers for the k-means algorithm. The same
procedure is repeated for d2, d3, d4 and a6.

Classification using Support Vector Machines: Support
Vector Machines (SVMs) [21] are a class of trained models
used in data analysis and pattern recognition for classification
and regression. The models are learned using the supervised
learning where the input data and output class are labeled.
Internally, the SVMs use the Kernel Methods [22], [23],
where in the algorithm depends only on the inner-product of
the data. Consequently, the properties of the kernel function
determines the dot product of the data. This inner-product
feature space is a high-dimensional space and SVMs can
effectively generate nonlinear decision boundaries to generate
accurate classification results. The kernel functions are also
advantageous to handle data that does not have fixed vector
structure. In this work, Radial Basis Function (RBF) kernel is
used. The RBF kernel for two input data samples are given
by:

K(x,x′) = exp
(
− ‖x− x′‖2

2
2σ2

)
(4)

where, x and x′ input data points and σ is the bandwidth of the
RBF kernel. In this work, based on empirical evidence during
the training stage, the RBF kernel parameters (C,γ) were set to
C = 1 and γ = 0.25, where C is the penalty parameter and γ =

1
2σ2 . The parameter C is a penalty term used in optimization of
decision boundary and controls the the classification error [24].

III. RESULTS AND DISCUSSION

The mode of data collection and the device used in this work
is different as explained earlier. Hence, as a first evaluation,
we verify our results with Bayly et al. [9] who have used
first dominant frequency within 2.56 second windows for the
length of the event. In the context of this work, it should
be noted that the data collection is using a sensor with
lower sensitivity and there is a filter within the device that
suppresses very low strength signal. This will allow us to
ensure that the basic characteristic of the signal that is needed
to classify ES and PNES is not lost. The results of dominant
frequency evolution during the events are shown in Fig. 5. As
it can be seen, consistent with the earlier result, we observe
little change in the case of PNES and vast change in the
case of ES. Based, on this we employed more sophisticated
signal processing techniques to extract features with higher
discriminating capability. As shown in Table IVc leave one out
error of 6.67% and an overall accuracy of 92% is achieved in
PNES classification using the approach presented in this work,
which shows a vast improvement over the previous results [9].

The results of the event detection stage are summarized
in Table II. All events are detected out of the 19 analyzed
events. The predicted start time is also fairly accurate other
than for patient no. 6. In terms of the duration of prediction,
a mixed set of result is reported. The goal at this stage was
to detect the event, the duration of the event is not a major
hurdle. By designing a simple extension filter, it is possible
to get more accurate event duration if required. Table III
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Fig. 5: Resultant accelerometer signal and evolution of domi-
nant frequency during (a) PNES and (b) ES from [9].

gives the accuracy, sensitivity and specificity obtained by the
proposed event detection scheme. As intended, the sensitivity
of the proposed algorithm is excellent with 100% results.
Although, some false alarms are detected in a few patients,
a closer analysis revealed very low intensity single seizure as
the primary reason for these patient. However, the threshold
chosen ensures that the events are not missed, which is the
original goal.

Fig. 6 shows stepwise result of event detection stage for
patient no. 1. The top most plot in Fig. 6 show a section
of the data with normal activity and seizure like activity.
At this stage, the algorithm should output only seizure like
activity. As explained in methodology, an activity filtering is
performed and the results are shown in Fig. 6(a)-middle. As
it can be seen, low intensity activities that involve normal
movement is filtered. Time filtering is performed and the
output is shown in Fig. 6(a)-bottom. It is clear that only
the event (on extreme right) and some high intensity normal
activity (extreme left) is remaining at this stage that needs
to be classified. Finally, k-means clustering is used to detect
events of interest that classifies normal activity (Fig. 6(b)) and
seizure events (Fig. 6(c))

Tables IVa, IVb, IVc and IVd summarize the results of
event classification stages using different feature-classifier
combinations for various mother wavelets and accelerometer
axis. f -score and leave one out error (LOOE) are also reported.
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Fig. 6: Results of event detection stage for patient no. 1:
(a) data with normal activity and ES event (top most); (a)
result of activity filtering (second subplot); (a) result of time
filtering (third subplot); (b) normal activity (enlarged view of
the left most activity from (a) third subplot) and (c) seizure-
like event (enlarged view of the right most activity from (a)
third subplot).

As it can be seen from Table IVc, support vector machine
using db5 mother wavelet and sub-band power as the feature
results in the best f -score and lowest LOOE consistently than
other feature-classifier pair and mother wavelets. In the event
classification stage, the training model was validated by a five
fold cross-validation. The results as shown in Table IVc and
Table IVd suggest that fifth order Daubechies wavelet gives
the best results, which also correlates well with the findings
of Nijsen et al. [11]. Similar results can be inferred from
Table IVa and Table IVb, where classification has been done
using k-means. Further, it is seen that a high f -score is found
for signal corresponding to z axis and the resultant signal.
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TABLE II: The table summarizes the event detection results for 8 convulsive patients, for a total of 19 events captured using
the wrist worn accelerometer device. The Table highlights the observed start time (with respect to VEM), accelerometer capture
start time and error. Similarly, the event duration observed on (with respect to VEM), accelerometer data and error are shown.

Patient Event Observed start Predicted start Start time Observed Predicted Duration Error
Number Number time (hh:mm:ss) time (hh:mm:ss) error (sec) duration (sec) duration (sec) (sec)

1

1 16:04:00 16:04:31 +31 66 60 -6 (9.1%)
2 00:33:00 00:33:07 +07 66 48 -18 (27.2%)
3 07:23:49 07:23:47 -02 58 49 -9 (15.5%)
4 10:03:00 10:03:37 +37 68 59 -9 (13.2%)
5 14:42:00 14:42:41 +41 52 51 -1 (1.9%)
6 16:12:00 16:12:33 +33 51 47 -4 (7.8%)

2 1 04:50:35 04:50:46 +11 105 44 -61 (58.1%)

3 1 15:23:53 15:22:35 -78 83 32 -51 (61.4%)
2 03:07:12 03:06:46 -26 60 42 -18 (30.0%)

4 1 15:08:38 15:08:09 -29 156 34 -125 (78.2%)
2 15:32:33 15:32:27 -05 115 58 -57 (49.5%)
3 11:52:15 11:51:24 -51 68 32 -36 (52.9%)

5

1 21:15:00 21:16:49 +109 434 307 -125 (29.2%)
2 11:20:00 11:21:19 +79 495 498 +3 (0.8%)
3 12:20:00 12:18:00 -120 660 269 -391 (59.2%)
4 12:35:00 12:32:50 +130 363 369 -6 (1.6%)

6 1 00:45:00 00:48:28 +208 500 64 -449 (89.8%)
7 1 12:06:09 12:06:26 +17 70 59 -11 (15.7%)
8 1 23:40:00 23:45:04 +304 85 58 -27 (31.7%)

TABLE III: Performance of the proposed event detection algo-
rithm. The Table shows the results of seizure event detection
approach for 8 patients that comprised of 19 convulsive events.

Patient No. Sensitivity Specificity Accuracy
1 100 96.15 96.88
2 100 58.82 59.22
3 100 93.94 94.12
4 100 91.30 92.30
5 100 100.00 100.00
6 100 73.33 75.00
7 100 72.62 72.94
8 100 100.00 100.00

Which suggests that most of the seizure-like activities manifest
in the direction of z axis, and the resultant signal shows better
results as it is a combined effect of the signals in all three
axes. However, it should be noted that there happens to be no
clear direction of movement corresponding to the z axis when
the accelerometer recording is a fully free form. As a result,
there is no easy way to attribute the movement to any specific
arm muscle.

Fig. 7 shows the observed and predicted value for patient
no. 4 and exhibits both epileptic and non-epileptic seizures.
The data was collected during 27-Aug-2012 to 30-Aug-
2012. Fig. 7(a) shows observed data and Fig. 7(b) shows pre-
dicted data. The gap in raw data on 29-Aug-2012 indicate that
the device was not worn or the battery was drained out until
the following morning. Normal activity in Fig. 7(a) is absent
as the information was not available in VEM but the prediction
shows normal activity that was significant as declared by the
event detection stage of the proposed algorithm.

This study demonstrates the use of a wrist worn accelerom-
eter for detecting convulsive seizure events and classifying
them as ES or PNES. Bayly et al. [9] used FFT transform and
showed that the PNES events featured a stable dominant fre-
quency and ES characterized an evolving dominant frequency,
and was proven that accelerometer device can be used as a

diagnostic tool. In this work, Wavelet features have been used,
furthermore, k-means and SVM have been used for detection
and classification of PNES events. The localization of time
and frequency using Wavelet provides a higher resolution
frequency and scale analysis of the accelerometer signals. In
line with this, the window size of the Wavelet decomposition
is reduced from 2.56 seconds to 1 second.

From Table III it is clear that the algorithm has a sensitivity
of 100% for all the patients, which clearly demonstrates the
strength of the proposed approach. For any seizure detection
algorithm, it is vitally important that no seizure goes unde-
tected but at the same time to minimize the number of false
alarms. Our efforts have been to incorporate these concepts
into the development of an automated algorithm and come up
with an accurate seizure detection and classification system.
Our algorithm performed fairly well with a near perfect event
detection sensitivity of 100% and a specificity of 85.77%
for the 19 convulsive events. The stage one of the proposed
methodology has shown promising and motivating results for
seizure event detection, clearly stating the reliability of the
wrist worn accelerometer devices in detecting seizure events.
One of the patients (patient no. 2) had a lot of false positives
which contributed to the overall reduction of specificity, oth-
erwise the algorithm was able to detect seizure events with
good accuracy as seen from Table III. For, patient no. 2, the
VEM recording of the patient was monitored as there were
a high number of false positives. The possible reason can be
attributed to the improper placement of the device or loose
strap of the device. In these cases even slight movement of
the hands will result in activity data with higher amplitude
and frequency.

Table II shows the observed time of the seizure (for all
events), which is the time of seizure on VEM and the predicted
time of the seizure, which is the time of the seizure on the
wrist worn accelerometer device. The positive start time error
denotes the latency in motor manifestation of the seizure event.
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Fig. 7: Observed (a) and predicted (b) events for patient no. 4 collected over three days. The patient had both ES and PNES.

In accordance from the VEM recordings of the patient, it
is seen that the latency is the result of the gradual increase
in motor manifestations which starts off as a subtle event
and manifests gradually. These subtle movements at the start
of the events, mostly get filtered out during the on-device
processing of the data in event detection stage and thus
resulting in latency. For patient no. 8 a huge delay was
observed. The reasons were attributed to error introduced due
to the time synchronization between iPod touch and the PC.
Further reasons were attributed to the posture of the patient
during VEM recording, resulting in loosening of the device
strap affecting the duration and timing of the recorded event
on device, however, the occurrence of such mishaps were
observed to be rare. Table II also shows the duration error
which, is found to be negative in all cases except for event
no. 2 in patient no. 5, where the predicted duration is greater
by 3 seconds, This can be due to the subsiding nature of the
convulsive manifestations of the seizure event as it terminates;
however, the electrical activity of the brain has completely
subsided. The reason for shorter predicted duration in most of
the cases is ascribed to the fact that when a typical convulsive
seizure starts and subsides, it is mostly followed by the subtle
limb movements (the typical observation made from the VEM
data). Such subtle limb movements are filtered on the device
during event detection stage and thus rendering equivalent to
no motor manifestations by the proposed algorithm. Thus the
observed duration is higher in most of the cases in comparison
to the predicted seizure duration.

The future direction involves in investigating whether the
acceleration data from a single axis is sufficient for seizure
detection. However, the seizure detection is a multifactorial
problem in that the seizures involve complex motor mani-
festations and the orientation of the accelerometer device is
continuously changing. In this direction, the motion analysis
of the trajectory of the patient’s arm during a typical seizure
using a wrist based accelerometer coupled with another sensor

and finding proxy accelerometer co-ordinate system to aid
accurate diagnosis is required. Beniczky et al. [25] have per-
formed the analysis of sEMG in ES and PNES. Motor seizure
causes involuntary contraction of muscles and performing
a study determining the accelerometer axes responsible for
those muscle activation will further help in minimizing the
false positives and increasing the accuracy of the proposed
method. This is achieved by considering the activity only in
a particular accelerometer axis and discarding the data with
minimal activity in the corresponding axis.

However, an ambulatory monitoring device for seizure
detection based on accelerometery can have the following
limitations:

• The accuracy of seizure detection can vary with the
placement of the device on the arm, as the algorithm is
developed for a wrist worn device.

• Since, we have considered seizures of durations greater
than 20 sec, any seizures of lesser duration will go
undetected.

• Furthermore, the system is still to be validated in home
conditions. For now, the system is tested and developed
in hospital settings, where patients do not engage in lot
of activities which will not be the case in real home
situations.

IV. CONCLUSION

A wireless wearable device for detecting and diagnosing
pseudo non-epileptic seizure is proposed. A novel algorithm
for detection of seizures using time domain features is de-
veloped. The detected seizures are classified into epileptic
and non-epileptic seizures using wavelet features and support
vector machine classifier. The data from patients undergoing
video EEG monitoring is collected using the wearable device
and tested on convulsive patients with excellent results. The
results demonstrate the feasibility of using an automated easy
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to wear device to detect and diagnose PNES in primary clinical
setting.
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