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Abstract—Analyzing crowd events in a video is key to un- engineering plans; and (c) video surveillance: addresses detect-
derstanding the behavioral characteristics of people (humans). ing and alerting unexpected events. The primary goal of this

Detecting crowd events in videos are challenging because ofyq is to provide an automated video surveillance mechanism
articulated human movements and occlusions. The aim of this
to detect crowd events.

study is to detect the events in a probabilistic framework for ) ) . .
automatically interpreting the visual crowd behavior. In this Optical flow estimates the motion between a pair of frames

work, crowd event detection and classification in Optical Flow in a given video [4]. The underlying principle is to match the
Manifolds (OFM) is addressed. A new algorithm to detect walking  |ikelihood of apparent motion between frames with respect to
and running events has been proposed, which uses optical ﬂOWChanges in brightness (pixel value). The optical flow approach

vector lengths in OFM. Furthermore, a new algorithm to detect has b di d i vsis [5]. detecti d
merging and splitting events has been proposed, which uses'@S PEEN USEd In crowd motion analysis [5], detecting crow

Riemannian connections in the Optical Flow Bundle (OFB). anomalies [6], [7], and facial expressions [8]. The optical flow
The longest vector from the OFB provides a key feature for vectors are low-level features; interpreting them as high-level

distinguishing walking and running events. Using a Riemannian events are computationally expensive, and the results can be
connection, the optical flow vectors are parallel transported very noisy. Video data are voluminous and the data have to be

to localize the crowd groups. The geodesic lengths among the d dt t -ti id il licati
groups provide a criterion for merging and splitting events. reduced to create real-ime video surveillance applications.

Dispersion and evacuation events are jointly modeled from the A manifold is a topological space and manifold learning
walking/running and merging/splitting events. Our results show algorithms aim at representing the data in high-dimensional

that the proposed approach delivers a comparable model to detect space to low-dimensional space by finding the mapping func-
crowd events. Using the PETS 2009 dataset, the proposed methOdtions. In doing so, the data dimensions are reduced while

is shown to produce the best results in merging, splitting, and . - - .
dispersion events, and comparable results in walking, running, Pre€Serving certain properties of the data. The properties that

and evacuation events when compared with other methods. are preserved are purely based on the objective function. Di-
mensionality reduction techniques can be broadly categorized

into linear and nonlinear techniques. Linear techniques, such
as Principal Component Analysis (PCA), assume a linear
data subspace compared with a nonlinear subspace consid-
|. INTRODUCTION ered by nonlinear techniques, such as Isometric Mapping
Video analytics is very helpful in learning the behaviord! SOMAP) [9]. A Riemannian manifold utilizes the classical
characteristics of humans from videos. Detecting and predigiémannian geometry comprised of certain metrics, such as
ing events in the videos is both exacting and challengifgner produ_cts, and the concept of Iengt_hs and differentiability
Individual object detection and tracking is a challenging task? the manifolds [10]. Optical Flow Manifolds (OFM) explore
in multi-object scenarios, and the difficulty increases further i€ optical flow space for various operations based on the
crowded scenes [1]. In particular, event detection in crowd€@ncepts of classical differentiable manifolds. OFM are a novel
scenarios becomes complex when faced with articulated AgProach to finding the intrinsic dimensions for image and
man movements and occlusions [2], [3]. Because the hum4fion applications. A recent work by Nagarej al. [11],
population is increasing steadily, the management and contépvide a detailed theory of these concepts. In this work,
of crowds have gained importance. Automatic analysis §PNcepts of Riemannian manifolds have been applied to OFM
crowd behavior is important in the following applicationsor crowd event detection. In this work, an extension to OFM,
(a) crowd management: strategies to evacuate buildings &#ed the Optical Flow Bundle (OFB) is introduced. In short,
premises in case of disaster events, ingress and egress r6lftB is the disjoint union of tangent spaces defined by OFM.
planning from sporting amphitheaters, guiding disabled a,ﬁjdeta[led definition of relevant concepts has been provided
infirm citizens, etc.; (b) public space design: the output frofd Section IIl. . .
crowd analysis provides a valuable input for architects andThe crowd events targeted are running, walking, crowd

construction teams for careful space utilization and efficief@rmation (merging), splitting, local dispersion and rapid dis-
persion (evacuation) as defined by Performance Evaluation
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(a) Walking (b) Running (c) Crowd formation (d) Splitting (e) Local dispersion (f) Rapid dispersion
(Merging) (Evacuation)

Fig. 1: Examples of crowd events from the PETS 2009 [12] dataset: (a) walking : people walk across the scene from right to
left; (b) running: people running from right to left; (c) merging: people from three different directions approach and merge at
the center; (d) splitting: people from right move towards the left and the split up into three different groups; (e) dispersion:
people standing in the center of the scene disperse locally outwards; (f) evacuation: people run outwards from the center of
the scene in all directions.

without using tracking algorithms. The main objective ofection presents a consolidated view that identifies the critical
this work (extended version) is to detect the events in developments in event detection analysis, specifically noting
probabilistic framework on OFM derived from Riemanniathat crowd analysis is in its infancy. Furthermore, most of
manifolds. The proposed work provides a theoretical treatméhe methods are based on motion estimation [17] and optical
for detecting crowd events. The main contributions of the woflow [4].

are summarized below:

1) Tracking groups in the crowds can be problematic due Human Action Recognition

to the number of people and articulated movements. Agxamples of commonly defined human actions include
motion-based, probabilistic crowd event detection framﬁmning, walking, skipping, doing jumping-jacks, jumping
work has been proposed. Although some initial Mmogsrward, jumping in the same place, jumping sideways, waving
els (e.g., probabilistic models [14] and histogram mogyo hands, waving one hand, boxing, hand clapping, hand wav-
els [15]) have been proposed in this direction, the appy, and jogging as defined by the two frequently used action
proach to detection of crowd events in this work is frongatasets: Weizmann [18] and Kungliga Tekniska hogskolan
OFM perspective. The framework makes use of onfkTH) [19]. Kinematic features provide a natural reference
optical flow vectors to detect crowd events, which is i modeling human actions [20]. Another way of identifying
contrast to other methods that use, appearance, sh@pfviduals’ actions is by identifying the body parts. Feature
audio, individual tracking and other spatio-temporal irboint-based approaches, e.g., [21], [22], use key features to
formation. The method is also semi-supervised: the Rfstect the action. Spatio-temporal invariant features (STIPs)
rameters learned from a particular view apply to othgfave also been extensively used in action recognition [23],
video sequences. [24]; audio-visual features were also utilized in addition to
2) Video manifolds offer many advantages for crowd analgT|ps [25]; multi-channel STIPs were incorporated into an
sis. Riemannian and OFM offer natural parametric spac@gstogram of Gradients (HOG) based 3D descriptor [26].
for the detection of crowd events (mainly spatio-temporghese approaches require predetermined feature training and
in nature). OFM have been primarily used in action recogacking for determining actions. It is clear that the self-
nition to model the parametric space [11]. In contrast, th&clusions and inter-object occlusions can reduce the effec-
detection of crowd events using OFM is addressed in thigeness of these approaches. Silhouette-based method, such
work. A new algorithm to detect walking and runninggs [27], faces challenges in extracting the silhouettes because
events has been proposed, which uses optical flow veciofs a critical step for feature extraction. Supervised learning-
lengths in OFM. based approaches (e.g., [28], [29]), use discriminating features
3) Localization of crowd groups is a difficult problem infor training and Support Vector Machines (SVM) for clas-
crowd monitoring and is essential for finding the grougjfication. For automated surveillance, supervised approaches
events in crowds (such as merging, splitting, local digre |ess attractive because they require retraining if the view
persion, and evacuation). A new algorithm to detegl the scene is changed. Manifold learning-based approaches
merging and splitting events has been proposed, whighe the most widely used technique for unsupervised action

uses Riemannian connections in the OFB. recognition [30], [31]. Unsupervised approaches have an edge
over supervised methods in terms of practicality because
Il. RELATED WORK of their straightforward readiness (zero or less training) for

Video behavior analysis has grown from human acti0?1”t0m""ted applications.

recognition to anomaly detection and eventually to event de- )

tection. The taxonomy for human behavior analysis describBd Crowd Anomaly Detection

by Chaaraouiet al. [16] provides the relevance of motion, In general, anomaly detection operates on temporal domain
action, activity and behavior. The keywords (motion, actiodata to identify the outliers or events [32]. There has been
and activity) are often interchanged in the literature. Thisngoing research on anomaly detection, where the system
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classifies unusual events (hereafter unusual, abnormal evamd the magnitude model is refined using online Gaussian
are called as anomalous) [33], [34], [35], [36]. Some dflixture Model (GMM). Blocks with similar magnitude and
the crowd anomalies addressed in the literature include Idirection in a neighborhood are clustered and tracked for
tering about a particular place, a person collapsing, orcaowd event detection. Employment of group tracking to track
person running when the rest is walking. Anomalous everdscentroid in each frame makes this approach less attractive
are contextual and are relative to the other objects in thecause tracking introduces (a) additional computation and
scene [37], [32]. Emergency events, such as crowd panicgrows significantly when the number of groups increases, and
a threat to human life, create anomalies. Identifying the@e) tracking errors lead to overall system errors. Thiata
events is important for video surveillance applications. Spe: [15] used blocks of Histogram of Optical Flow (HOOF)
tral clustering-based approaches [38], social force model [3®]r each frame and compared this result with the neighboring
hierarchical clustering [35], an&l-means clustering [40] are frames. Based on this spatial and temporal information, crowd
widely used. Optical flow-based methods use spatio-tempoeaknts were detected using Laplacian Eigenmaps. The main
analysis where motion is used for the detection of anomalodiswback of this approach is that the motion direction is
events [34], [41], [42], [43], [15]. Region-based anomalous massumed to provide information about various crowd events
tion approaches [44], limit the motion information to particulaand also low-dimensional embedding is found using a time-
regions. Sliding-window approaches [36], a combination abntrolled parameter. Lét al. [55] performed the crowd event
spatial, temporal and motion information, limit the anomalougetection using the intersection of motion vectors derived from
events to structured and time-based events. As mentioridaris corner point and Kanade-Lucas-Tomasi (KLT) feature
earlier, human action recognition involves recognizing theacking. The events were classified based on the motion
actions of an individual. However, anomaly detection attempisctor patterns at local intersection points in the space and
to detect the actions of an individual relative to the crowd. membership event voting. The limitation of this approach
is that tracking of feature points becomes cumbersome and
often occluded due to crowd movements. It is clear from
this discussion that limited research has been conducted in
Video event detections are usually used to search fordaetecting and predicting events. It is also worth noting that
specified action. Because this process involves detecting andst of the methods use training data to classify the events.
matching actions, human action, anomalous events and crowd
events are utilized. Visual (color, texture and shape) and audio I1l. VIDEO MANIEOLDS

(timbre, rhythm and pitch) features are normally used for video The reduction of dimensionality involves reducing the num-

event detection [45]. Because the events have both spatial %@9 of latent variables required to represent a point in a

t_emporal |nfor_mat|on, texture feature_s from spa’qal mform iven space, and corresponds to the intrinsic dimensionality
tion [46], motion features from spatio-temporal informatio

d color [471. 148 d mixt f text d motion 49 structure) of the data [56]. In the context of video manifolds,
and color [47], [48], and mixtures of texture and motion [ iven a set of frames as input, the objective is to identify the
are utilized. Volumetric analysis is a rising trend in video eve

detection [50], [51] edefined human events in a given dataset. The hypothesis

. . is that the events lie in a low-dimensional feature space; the
Chenet al.[52] applied an agent-based technique to dete\(ﬁ eo frame is aR%*™*".dimensional data, where the pixel
gueuing, gathering and dispersion events with the aid

. . _8lor information is(r,g,b) C R3. The spatial positioning
tracking. It incorporates head features, template matchmg,y) C R2, which is parameterized by the sampling interval

Kalman filtering and SVM for object agent analysis. Five tyPESt the frame.t ¢ R, and the number of rows and columns

.Of ac_tions were defined using four people: walking, runningre indicated by then— and n—dimensions. Representation
jumping, squgttlng and stqppmg on a!ocally collected datas "a pixel for monocular vision can be generalized as a
From the review of the literature, this work appears to vector, I(r(1), g(t), b(), (1), y(t)) and as a 6D vector,

the fir;t of its type targeting event detection and behavi9 r(t), g(t), b(¢), d(t), z(1), y(1)) for stereo vision. The input
analysis. Almost all of the methods that have been propos consisting of events are analyzed in high-dimensional

i|_nce tlhegahave beer;tes;ed ud5|_ng thg_ PE.TS. 20.09 _(Ial_ataset ce and represented as low-dimensional data, such as proba-
: | eta '_[ ]'\ﬁropfolsde STI?/'I[a-f riven |slfr|m|nat|Ye empor ility outputs that are one-dimensional. In this work, there are
nteraction Manifold ( ) framework to analyze 9r0UBH e probabilistic models that generate outputs eacR'in

patterns as opposed to the param_etrlc Ba_y_e3|an frgm(_ew ether, we can represent the entire system input-output as
The framework generates probability densities that mdmaﬂ@xmxn L R3

the activities among the groups (of objects) with applications

to a soccer game. Garaét al. [54] used a reference frame )

to extract motion information and 2-D HOG descriptors a8 Manifolds

features. These features were tracked to categorize the crowthtuitively, a manifold is a space that is Euclidean locally,
events. Occlusions in crowded scenarios make tracking i, a point in this space can be represented unequivocally,
feasible. Benabbast al. [14] used optical flow to extract and appears to be in the Euclidean space [57]. For example,
motion patterns and build a direction and a magnitude modethree-tuple £, y, z) that represents a point in the 3D space
for crowd event detection. Furthermore, dominant directioms threemanifold, where the intrinsic dimension of the space
are learned by circular clustering using a probabilistic modisl three, which also implies that a point can be specified

C. Video Event Detection and Crowd Analysis
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without ambiguity. However, in the case of parameterized In the optical flow case, the horizontal and vertical velocities
space, the combination of different parameters can represent v,) naturally form the directional derivatives alongand

the same point uniquely. For example, a twomanifaldy) = y directions with some additional constraints being applied.
(f1(t), f2(t)) parameterized by such thatz? + y?> = 1 The rationale behind this argument is that with a simple curve
may correspond to the same unit circle for a differént ¢ (as shown in Fig. 2), the tangent vectorfollows the
Generalizing the notion of a manifold to higher-dimensionairection along the curve. Thus, computation of optical flow
space, we denote an n-tuple®* asn—dimensional manifold is analogous to computing tangent vectors for a function(s)
or n—manifold. The following text provides some of theg(belonging to objects) in a specified path (spatio-temporal vol-
definitions (based on [10]) that are necessary for modelingne). Optical flow can be regarded as a multivariate function
event detection (readers familiar with manifold concepts caftr, g, b, z, y) parameterized by the sampling inter¢alThe
skip the definitions in this subsection). optical flow definitions with respect to the manifold definitions

Definition 1. A real-valued functiory : R™ — R™ is said to given above are as follows:

be differentiable ap € R™ if there is a linear transformation
T, such thatT, : R™ — R

p I +0) = 10) = T,

l[¢]] =0 (1]

@

The (linear) transformatior?}, is called the derivative of at
p-
Definition 2 (Manifolds). Let U be an open subset of the Fig 2: A curvec(t) with tangent vector at point = ¢(t).

manifold M (U c M). Let¢ be a homeomorphism such that
¢ : U — M. Then,(U, ¢) forms the coordinate chart for the

m-dimensional manifolg\. D_efiniti(_)n 6 (Op'FicaI Flow Vector)._ LeF R™ be an m-
dimensional manifold. Lep be a point inR™. Let ¢ =

Definition 3 (Tangent Vector). LetR™ be an m-dimensional (;1 ;2 ... 2™) be a differentiable curve of clags?, such

manifold. Letp be a point inR™. Letc = (z',2%,---,2™) thatc: I — R" with ¢(0) = p. Then, the Optical Flow Vector

be a differentiable curve of clasS> such thatc : I — R" s given byv, = c(0) = (21,22, ,2im).

with ¢(0) = p. Then, the Optical Flow Vector is given by ) .

vy = c(0) = (x, 22, zim). Definition 7 (Optical Flow Tangent Spacg. Let R™ be an

o _ m-dimensional manifold. Let be a point inR™. Let ¢ be a
Definition 4 (Tangent Space(geometric)) Let R™ be an m- (jfferentiable curve of clas§’? such thatc : I — R™ with

dimensional manifold. Lep be a point inR™. Letc be a ((0) = p. Then, the set of optical flow vectors ate R™
differentiable curve of clasé'> such thatc : I — R" with  forms the Optical Flow Tangent Spacg M.

¢(0) = p. Then, the tangent vector efat p € R" is ) ) ) S o
) In multi-variable analysis, the directional derivative at a
C

De(0) = ¢(0) = lim e(t) — ] (2) pointp € R™ on a manifold provides a more generalized
t—0 t definition of the tangent vectors.

Definition 5 (Tangent Space(analytic)) Let (U, ¢) be the

coordinate chart withp € U for an m-dimensional manifold

M. Then, the tangent spadg.M is a derivation ofC> (M)

at a pointp € M such thatv : C*°(M) — R, wherev is the

vector at pointp.

Definition 8. Let f be a multi-variable, differentiable function
defined in the neighborhood of pointLetc: (—c:¢) - R”
(e > 0) be a differentiable curve with(0) = p and ¢(0) = v.
Then, the directional derivativ® f of f in the direction ofv

is given by
B. Optical Flow Manifolds D(foc) = d(f(c(t))) 3
A brief review of the popular optical flow methods has been _Df Elzt}) @
= Df,(v).

provided here. Horn and Schunck [4] estimated the motion
between images by applying brightness constancy, which isLet M be an m-dimensional manifold. The tangent vector
a dense approach but provides smooth flow vectors. Lucisa pointp can be written as

and Kanade [58] considered the motion in the local neigh- m
borhood to be constant and the motion was computed using veET,M= Zv(xi) (
a least-squares approach, which is a sparse flow computation im1
approach. Farneback [59] used a second-degree polynoryial
velocity estimation model. Zactt al.[60] applied the method
of the total variations (TV) using thé; norm of penalizing
the flow variations as opposed to the quadratic approach ta
by Horn-Schunck [4]. Tacet al. [61] used a probabilistic
approach based on local evidence (color constancy) to compDeinition 9. Let f(z!, 2%, 23, 2%, 2°) represent the function
the motion vectors. of optical flow in the spac®,M. The horizontal velocity,,,

0
ox? )

©®)

case of Optical Flow Tangent Space, M, we repre-
sent the functionf(r,g,b,z,y) in a generalized form as

def . .,
lfe(ﬁ’g’b’x’y) == f(a', 22,27, 2%, 2°) where Einstein’s sum-
mation convention is used.
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and vertical velocityv, atp € M are given by U C R™ that varies smoothly on the manifold. The metric
g can also be written as

0
_ 1,2 .3 .4 .5, v . )
Upm—f(l',l',l',fb ,ZC) U|:0’070’8I470:|7 (6) g:Zgilj(d:EZ@dxj)a (9)
0 N
vp, = f(a' 2?2 2" 2%) v [0,0,0,0, @} . (0 where® degotes the tensor product notation, vector space
_ _ V=> v— et{%| , 3= .-, 32| } is the basis
Definition 10. An optical flow vecton, at p € R™ is anm- — Ox! P P P
tuple vector with real components such that for a differentiabfer 7, M and set{dz',dz?,--- ,dz™} forms the dual basis
curvec: I — R, ¢(0) = vp. to (I'pM)* where
Theorem 1. The optical flow spac®, M is a vector space. _ ) 1ifi=q
. . (dap) (=] | =4 "7 (10)
Proof. Let f; and f, be two optical flow functions on\/. Oxd |, 0if i # j.

Letp € R™ be a point on the optical flow spacg, M. The In the case of video (set of image frames) processin
functions f; and f» are nonlinear, and hence cannot be addefd id v the intensity | fg i h P 5O 9
or multiplied directly. In contrast, additional structure, such ag We consider only the intensity information, then
componentwise addition and multiplication of the flow Vecto’%arameterlzed space can be further parameterizgy a5 =

atp € O, M, can be achieved. LéU, ¢) be a coordinate chart In(tfce(rg’lgl(gz) E\Cc(é) ’sz]tc)ti:d Jjggl)v’ grgt)b’;gft)}-. [R;hie];ggeyp?re
aroundp € M. Then, ¢ o fu(f) and ¢ o f(t) are curves in R?, assuming the standard basis vectérsard aﬁ their dual

R™, whereo denotes the composition operation. Therefore, ) L Oy o
° P P ga: and dy are independent, a constant Riemannian metric is
for vi,ve € OpM

) given by g;; = dz ® dz + dy ® dy.
(). vi+va=0¢""o(dofi(t)+¢o fa(t)). - . ,
(i). vs=¢ Lo(réofi(t)),veO,M, s€R. Definition 16. Let (M,g) be the Riemannian space. Let
¢ : la,b] — M be a smooth, parameterized curve on a
Riemannian manifold/, wherea, b € R. The length of curve

Definition 11 (Optical Flow Bundle (OFB)). An optical flow C is given by

bundleOM is the disjointed union of optical flow spacg M s [ .
such thatoM : | | O, M, where| | indicates the union of I(e) == / gelc(t), c(t))dt. (11)
. peEM “
optical flow tangent space®){M). Proposition 1. Let (M,g) be the Riemannian space. The

Definition 12 (Optical Flow Fields). An optical flow fieldX nonzero optical flow spaces indicate the presence of moving

on anyU C R™ is the smooth assignment of an optical flof2€Cts:
vectorv, € O,M for f € C%(U) such thatXf : M — R, Pproof. The space®, M indicates the presence of a vector field,

with the following properties: and therefore, there must be derivatives in particular directions.

(). X(f+g9)=Xf+Xgforall f,ge C>(M), Except for variations in the scene caused by noise, the majority

(i). X(fg)=fXg+gXfforall f,g e C>(M), of the vector field corresponds to the presence of an object

(ii). X(sf)=sXfforall feC>®M), scR. or group of objects. This indicates the presence of moving
objects. O

C. Riemannian Manifolds
IV. EVENT DETECTION AND MODELING

Definition 13. Let V' be the vector space arnd* be the dual

vector space. Then, a tensor of types) onV is a multilinear A. Events
function map We believe that crowd events, such as walking, running,
crowd formation, splitting, local dispersion and rapid evac-
T:V x - xXVIXVx---xV—=R (8) uation, are identified based on key human activities and
7 copies s copies movements that are normally perceived as fundamental events

that we as humans perceive, and we believe these events are

essential for visual surveillance. We use the keyword "event”

synonymous to “activity.” One of the main aims of the PETS

_ i . ) dataset is to provide a common ground for measuring the

(') gisa b|||near function: (0,2)-tensor. performance of algorithms [62]. Therefore, the PETS 2009

(ih)- g IS symmetric: for tangent vectors,,, Y, € TyM at  jaiaqet [12] is used in this body of work, and these events are
pointp € U, gp(X,, Yy) = gp(Yp, Xp)- defined as described below:

(ii). g is positive definiteyg,(X,,Y,) > 0 for all X,,,Y, €
T,M, X, #Y,, and g,(X,, X,) =0 iff X, =0.

Definition 14. A Riemannian metrig, atp € R™ on U C
R™ that varies smoothly on manifold/ has the following
properties:

« Walking (W) — is theeventwhere objects move at a par-
ticular velocity collectively, which is less than the velocity

Definition 15. A Riemannian manifold (M,g) is a smooth of the events defined in running. Furthermaebevents

manifold A/ with a Riemannian metrigj, at p € R™ on are defined, such asganding(Ws), slow walking(W,,)
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ard fast walking (Wy,,) for efficient recognition and optical flow calculation. Thus, for every frame we have two
detection of events. Thereforgy = {W,, W,.,, Ws,}.  scalars corresponding to two optical flow vector spacesid

« Running (R) — is the event where objects take spatigy, respectively.
temporal paths that are faster than those described inThe above procedure can be accomplished using the fol-
walking. Furthermoreslow running(R,,) andfast run- lowing. The tangent plane to the graph of parameterized space
ning (Ry,) are defined as subevents of running. Therg{r, g, b, z,y) with respect to the directional derivati%éy, (¢)
fore, R = {Rs, Ryr}. of z and Vv, (t) of y directions provide tangential vectors in

« Crowd formation (F = {F}) — is the event where the local coordinates in the direction of andy, where

spatio-temporal analysis reveals that objects are converg- dof

ing to a single point or multiple points. Additionally, the Vv (t) = (7, V), (12)

tendencies of the objects exhibiting this phenomenon ale |

categorized under this event. Yy (1) def (7, V) (13)
Yy I ) Y/

» Crowd splitting (S = {S;}) — is the opposite of crowd
formation. The objects in the scene would diverge frofhereV, = [0,0,0, 1,0] and V, = [0,0,0,0, 1] are the unit
a single point or from multiple points. vectors in the directions andy. The directional derivatives

« Local dispersion (D = {d}) — is a conditional event are obtained from the dense optical flow [4]. The temporal
where a walking event is recorded in association wit§radients of the tangent vectors with respect:tandy and

crowd splitting. for imet = {1,2,..., N} are
« Rapid dispersion (£ = {E.}) — is a conditional event )
where the running event is observed in conjunction with VA (t) = 7 () =T x I x Vr,(t), (14)
crowd splitting. otz
and
: 9%y,
B. Walking and running events Viy(t) = atdy (t) = T x I x V(1) (15)

The flow of the proposed approach is summarized in Fig.
Walking and running events are based on the length of the

curves in the nonzero regions of the flow space defined in Rie- r -1 0 0 0

mannian spacélM, g). The underlying physical phenomenon p det 0 1 -1 0 0 cRU. (16)
is that the length of the optical flow tangent vectors at different 1o o ) 0 ’

optical flow tangent plane®, M associated with walking o 0 0 1 -1

events will have a distribution that is different from running

events. LetN (u1,0?) represent the lengths associated witandI € R™*™ is an identity matrix.

walking events and leV'(u2,03) be the distribution of the  The combinational tangential temporal gradieptrovides
lengths associated with running events. Then, the relationskig magnitude of the velocity vector in each direction. The con-
o > py always holds. tribution is weighted by the coefficients such thatw; ; = 1.

The weighted summation of the tangential temporal gradients

Proposition 2. Let (M, g) be the Riemannian space. Li§t) (V4. (1), VA, (1)) is calculated as
x ) Yy

be the length of the optical flow vectors (WM associated
with optical flow spaces. Then, the walkidg and running
‘R events can be determined by the lengths of the curves of

: 1 Ve (t 0
Vian =3 Sww <1 |50 o] an
the optical flow vectors. 7

Proof. The lengths of the optical flow tangent vectors are 9 0 waa VA, (t) |7

determined using optical flow tangent vectors@M for . 1 . .

all pointsp € M using Definition 16. In other words, the Via=g > (wllv%c(t) +w22V7y(t)), (19)
distribution of the length of the flow vectors of the optical t=12,...N

flow bundle provides sufficient information about the currenthere the scalaV+ 4 represents the mean velocity correspond-
crowd events. Events are spatio-temporal processes, and sgrigito the weighted summation of andy directions, respec-
only spatial information has been incorporated. The tempotalely. The functionfs : Vi4 C R — A = {WUR} C R®
information is derived from tracking the tangent bundle’s staiaaps the combinational tangential temporal gradient to one of
consecutively corresponding to video frames. the subevents such that:

The key determining feature of walking and running events : .
is the length of the optical flow tangent vectors. This has Standing ) VW_A =0
been clearly shown in our previous work (please refer to Slow Walking 0 < Via <a
Fig. 2 of [13]). The tracking of every single optical flow fa(t) = { Fast Walking a; < Viya<az (20)
vector pertinent ta), M becomes computationally expensive Slow Running as < V44 < as
and noisy. Instead, for each frame, only = maz(OM)
and v, = mazx(OM) are tracked, which reduces both the
computational time and noise that could be introduced by tidere F4(t) = {fa(1), f4(2),..., fa(N) : a; € R}.

Fast Running a3 < VA4,
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Fig. 3: Flow of the proposed crowd event detection approack. drbwd events from the input video are defined on OFM.
The longest vector from the Flow Bundle is used for the detection of runff®gand walking(¥V) events. Simultaneously,
groups are localized using centroids, and the direction of the group is found by parallel transporting of flow vectors. The
geodesic lengths among the different groups indicate the tendency for the crowd to(digrged split(S). Dispersion(D)

and evacuatior{Z) are jointly modeled from walking or running and merging or splitting events. The output at the Stage
1 of classification is based on the threshold filter (individually for event pairs). At Stage 2, the temporal filter screens the
high-frequency output from Stage 1.

The probability of eventA given time historyt = the centroid location provides the principal direction of the
{1,2,...,N}is group and its velocity, which provides localized information
about the group and its tendency.

W, [fazw |+ faswou |+ [fazwy The global group tendency is then detected using all of the
Pr(Alt) = |[Ea(®)] (21) 9roups in a given frame. The distance between groups can be
R |fa=r..| + |fa=r,.| measured using the geodesic distance. The geodesic distance
’ |FA()] ’ between the points (assuming the curves adenissiblg is
where| - | is the cardinality of the sef4(t). o given by b
L5 2L [ g, (s, 50 (22)

C. Merging and splitting events - ] )
roposition 3. Let (M, g) be the Riemannian space. Ligt)

& the length of the optical flow vectors WM associated
fth optical flow spaces. Lef® (v);; be the geodesic distance
etween two tangent points. Then, the global events mefging

The merging and splitting events are characterized by t
movement of crowd groups and their intergroup distances.
C = {1,2,---,N} represent the current number of crow
groups. Qne can imagine the movement of tangent plane_s splitting S can be determined by the geodesic lengths of
functlon in 5-D space. Furthermore, Iet_each of th_e _functlo e curves of optical flow vectors.
in 5-D space represents a crowd. Merging and splitting events
are relative events in the sense that one group is moviRghof. The geodesic distance matrix provides the geodesic
away from the other, but the same group may be approachitigtance between groups. Thus, the temporal evolution of
another group. In this work, because the goal is to seek glolgabup locations can be measured by tracking the variational
information about the crowd, we report an overall tendency ehanges in the positions of the tangent vectors provided by

groups to merge or split. the geodesic distance matri&y.

Initially, groups in the crowd are identified using the T
nonzero optical flow vectors in the OFB. The connectivity G(t) =5(1) () (23)
of the nonzero tangent vectors in the neighborhood extends L)1 L)z - L(yhn

in all directions until the tangent vectors are zero, which L(V)21  L(y)22 -+ L(y)2n
creates contour-like boundaries around the groups. The center = : : : :

of mass of each group is located using a centroid. Using ' ' ' '

the Riemannian connection on the OFM, the tangent vectors LOxr £Mnz - LO)Nw-

at different points in the tangent bundle corresponding for each of the groups in the crowd, the mean relative
that particular group are parallel transported to the centrgidobability of merging or splitting is given by, £(y)n; or
location. This parallel transport allows the optical flow tangeft’, £(v);n becauseG is symmetric. The overall tendency
vectors to be moved from one tangent plane to another withait the crowd at any given instance is Zi_’j L(~). Then,
affecting the properties of the vectors. The resultant vectorthe probability of an evenB given the temporal variations

(24)
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t={1,2,...,N}is fg(t). The functionfz(t) : G(t) C R — B. Implementation Details
B ={FUS} C R maps thevariations of geodesic distances \ye ysed a binary classifier to classify the events based on
to one of the subevents such that the probability density function generated by the events as

Splitting, " G(t) >0 described in Section IV.
t Walking and running events. The parametersv;; and
fs(t) = Merging, Zg(t) <0 (25) wag N (19) were set td).5. For an event to be considered
T running, the probability of the function in (20) is considered
Neither ZG(t) -0, to be greater thaff; i.e.,
t
<
whereF(t) = {f5(1), f5(2),..., fa(N) : f5(t) € R2}. The Pr(Alt) = {;;v ;g (30)

probability of events given time historyt = {1,2,..., N} is

|\ fo=r,| Merging and splitting events In the case of merging and
’ |F3(t)f| splitting, we found significant overlap betwedh(F) and
Pr(B|t) = S |f5=5. (26) Pr(Neithen. Therefore, to classify the events accurately, we
T |Fe(t)]” used
where]| - | is the cardinality of the sefz(t) and Splitting, Z G(t) >0
Pr(B=F)+Pr(B=S) <1 (27) f8(t) = t (31)

A positive variational change between two tangent planes
infers the possibility of a splitting event and a negative
variational indicates the possibility of merging. A combinatioANd
of these possibilities leads to the overall crowd formation or Pr(Blt) = {]'", >Tiny,,G(t) <0 (32)
splitting events. O S, >TiANY,G(t) >0.

Merging » G(t) <0.
t

Dispersion and evacuation eventsThe results for dis-
persion and evacuation events are jointly modeled, and the
classification of events is given by

D. Dispersion and evacuation events

The local dispersion ) and evacuation®) events are
derived from the joint probability distribution of eventsand

S;IJ:Eyprobablhty that the everd is a local dispersion is Pr(Clt) = {g zg (33)
Pr(C = D|t) = Pr(A = W|t) - Pr(B = S|t), (28)

and the probability that the eve@tis an evacuation event isC. Calculating Parameters and Thresholds

given by The temporal parametémwas determined using the training

Pr(C = £[t) = Pr(A = R|t) - Pr(B = S|t) (29) dataset. The was selected such that the least squares classifi-
cation error was minimized. In the PETS2009 dataset, this was
V. EVALUATION found to beb in all of the experiments. The temporal filter at
The proposed method was implemented in Openzy Stage 2 uses a convolution operation to smooth the transient
on a Virtual Box Linux machine (64-bit Ubuntu 14.04 LTS)ignals from Stage 1. The convolution operation uses a 1D
equipped withl.5 GB RAM and Inte® i7—2600 CPU running Gaussian kernel with kernel size equals= 5. The output

at 3.4 GHz. from the Stage 1 to Stage 2 are scalar values.d;etlenote
the 1D signal from Stage 19> at Stage 2, andr denote the
A. Dataset Gaussian kernel. The temporal filtering operation at Stage 2

The PETS2009 [12] dataset was used to evaluate th&a" be written as

roposed method. The crowd events are categorized under
IODatlzlset S3 with four different timingd4 — 16, 14 —g27, 14— Sa2(i) = Z G(5) - 51(i = j +n/2),
31 and14 — 33,) and for each timing, there are four differ- =1
ent views(001, 002,003, and004). The timing, for example, where: and; are the indices used to perform convolution, and
14 — 16 denotes the time (in the format hh-mm, where “hhi € [1,¢].
means hour and “mm” means minutes) when the data wereThe parametersaf, a2, andas) in (20) were determined
collected. To the best of our knowledge, only the PETBy modeling Mixture of Gaussians (MoGs). The initial values
2009 [12] dataset has events where all six crowd events ctor parametersu; were determined by using th&-means
be clearly evaluated based on human analysis. Therefore, éipproach [64] withK = 3. These parameters are specific
proposed approach was evaluated on a total@fifferent to camera views and the datasgt-means uses least-squares
sequences. All of the sequences were manually annotated ietmr to partition the training data int& clusters and deter-
three event groups. The preprocessing of the video framesrime the K centroids. Later, MoGs were modeled using with
based on [63]. Gaussian means equal I6 means.

n

(34)
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The event pairs (walking-running, dispersion-evacuatioepecified¢; and¢2 based on motion vectors. The confusion
are modelled using a mixture of two probability densitynatrices (Table IlI) at Stage 2 indicate that walking events
functions (PDFs). Let us consider the walking and runningere correctly classified1% of the times, whereas running
event. The procedure outlined in [65] is followed. Lgt) = events were detected witB4% accuracy. Classification of
Pipi(a) + Pyp2(a), where P, and P, correspond toV and merging events equalled walking1(%) and splitting events
R events, andpia and p2(a) are the corresponding PDFswere incorrectly classified as merging at an averag&%f
respectively. The PDFg; andp- are assumed to be Gaussiaispersion events were efficiently classifi®d %) as opposed

ie., to evacuation event¢%).
o Pl _% P2 _ a7*;2 35
pla) = fror T Noz= A (35 TABLE I: Confusion matrices for the crowd events de-

tected [13] using the PETS 2009 dataset [12] at Stage 1: (a)
walking and running events, (b) merging and splitting events,

e c) dispersion and evacuation events.
/ p1(a)da (36) © P

Then, the probability of error in classifying’ andR are

T
El (Tl) = A pg(a)da, EQ(Tl) =

I (@) Confusion matrix (0) Confusion matrix (c) Confusion matrix
Then, the total error probability is for walking and running for merging and split- for local dispersion and
events ting events evacuation events
E(T) = PE\(T1) + PLEo(Th). (37) W [ R F [ S D | %
W | 0.76 | 0.24 F | 088 012 D | 094 | 0.06
The minimal error is found by differentiating (37) and equating R [ 0.37 | 0.63 S | 04 [ 060 £ | 0.35 | 0.65
it to zero, which results in
Pip1(Th) = Popz(Th). (38)  TABLE II: Confusion matrices for the crowd events detected
The analytical solution to (38) is given by usng the PETS 2009 dataset [12] at Stage 2: (a) walking and
running events, (b) merging and splitting events, (c) dispersion
(07 — 03)(T1) + 2(u103 — pao3) T+ and evacuation events.
oo P, . .
(o213 — o212 + 20202 In(222))  (39) (a) Confusion matrix (0) Confusion matrix (c) Confusion matrix
o1P; for walking and running for merging and split- for local dispersion and
Assuming equal variances for PDFs, i.e;, = 0, = o, the events S ting e"e”ii . e"acua“og eve”t;
thresholdT: is given by W | 0.91 | 0.09 F | 091 0.08 D [ 0.94 | 0.06
_ 2 P R | 0.16 | 0.84 S 0070093 £ | 014 | 0.86
=ML T g2 (40)
2 1 —p2 P

The valueT} in (40) is used in (30) and (32). Similarl§z is  tAB|E III: Comparison of the detection of the start and
found for the dispersion-evacuation event and is used in (33)q4 timings (in seconds, fps=7) of crowd events with the
ground truth from the selected video samples [63]. This table
D. Results and Discussion highlights the model delay in detecting particular events. The
The results of the proposed crowd event detection approdBaXimum delay was observed to be 4 seconds.
are discussed at three different levels. First, the events are fur

= Video Event Ground Truth Detected
damentally pairwise: walking-running, merging-splitting and Start-End (sec)| Start-End (sec)
dispersion-evacuation. Stage 1 and Stage 2 confusion matric34-16, View-001 | Walking lg:g 4 1(7)'_;8
for all three pairwise crowd events [13] are provided in Tables & Vim0 : 615 717
and I1. From Table I(a) the walking events were detected ag 1416 View-001] Running 24-31 28-31
walking 76% of the time. In contrast, running events were | 14-33, View-001| Merging 0-29 0-27
detected as walkin§7% of the time and as running3% of 7553 7953
; ; 14-33, View-001 | Splitting

the time. Merging events were correctly detecg of the
time and splittings0% qf the time, as showq in Ta_ble I(b). The 14-33, View-001| Dispersion 0-48 0-49
highest correct detection rat@4(;) was achieved in detecting

; ; ; ; 14-33, View-001 | Evacuation 48-53 49-53
dispersion events and5% correct detection was achieved for :

evacuation. If we consider an actual event of the frareebe

x; and the detected event to pg then the error in detection At the second level, the results are reported in terms of event
for the frame: will be eitherT; = 1 if the event detection detection as a time series. The results in Table Il provide a

is correct or elsél; = 0. Consequently, the percentage erracomparison of the detection of the start and end timings of
(perror) @accumulated over the model delay during detectiche crowd events. Fig. 4 shows the corresponding temporal
will be perror = Zfl @ x 100. This result is related to output for walking and running event. Here, we showed the

the large error rates in the confusion matrices. The threshaldtput for View-001 of the PETS 2009 dataset. We conducted
parameters for running and walking vary from method texperimental evaluations of event detection from different

method, for example, Benabbas$ al. [14] chose0.95 for views and found that View-001 best captures the crowd events.
running based on Gaussian model and Gaetteal. [54] The same events result in different events when viewed from
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TABLE IV: Comparison of crowd event detection results. The last two columns of the table indicate the results of the proposed
approach at Stage 1 and Stage 2 respectively. The bolded text indicates where the proposed approach has better performanc

Crowd Event| Measure Statistical Holistic Random Motion Stage 1| Stage 2

Filters [66] | Approach [67] | Forest [14] | Pattern [14]|| Results | Results
Walking Precision - 0.87 0.96 0.97 0.61 0.82
Recall - - 0.99 0.96 0.75 0.97
F-score - - 0.97 0.96 0.67 0.88
Running Precision 0.99 0.75 0.86 0.75 0.78 0.93
Recall 0.99 - 0.68 0.81 0.63 0.84
F-score 0.99 - 0.75 0.77 0.69 0.89
. Precision - 0.68 0.65 0.59 0.85 0.92
Merging Recall - - 0.46 0.45 0.88 0.89
F-score - - 0.53 0.51 0.86 0.9
L Precision 0.65 0.74 0.73 0.47 0.66 0.93
Splitting Recall 1 - 0.92 0.47 0.6 0.95
F-score 0.78 - 0.81 0.47 0.62 0.94
Dispersion Precision - 0.8 0.58 0.67 0.9 0.94
Recall - - 0.48 0.45 0.94 0.98
f-score - - 0.52 0.53 0.91 0.96
Evacuation Precision - 0.94 0.83 0.69 0.75 0.85
Recall - - 1.0 0.82 0.65 0.84
F-score - - 0.90 0.74 0.69 0.85

different views. In the proposed method, empirically chosdiiter with window size corresponding to delay in processing
t = 5 was used for crowd event detection, and is the mafh= 5 seconds) was added to refine the results. This eliminated
contributor to accurate detection as well as detection delthe transient probability outputs and allowed the smooth
The detection delay is the delay incurred by the model (timeansition of events. The justification for the addition of this
window) and not the computation delay, which has not bediter is that the abrupt movements in the scene due to human
reported in the literature. From Table Ill, we observe that themovements cause the length of the flow vectors to overshadow
is a maximum delay of seconds between the actual start of aactual events. Further, we observed that in the PETS 2009
event and correct detection, which is same for all cases acrdasaset [12], the crowd movements abruptly changed. For the
different camera views (View-001—View-004). The start ofesults at Stage 1, dispersion (precision: 0.9, recall: 0.94 and
an event may be slightly delayed due to camera views aftd-score: 0.91) and merging (precision: 0.85, recall: 0.88 and
occlusion. F—score: 0.86) events have the highest accuracies.

Walking and Running Events Table Il shows the confusion matrices for classification at
alking stage 2. Clearly, it surpasses the Stage 1 results. As shown in

crrumng —— Table IV, it can be seen that merging events (precision: 0.92,
recall: 0.89 andF'—score: 0.9) have performed better than

‘\ AN 1 others. Similarly, the results of a splitting event (precision:

N N~ 0.93, recall: 0.95 and”—score: 0.94) and dispersion events

!
0 5 10 15 20 25 30 35

Time (in seconds) (precision: 0.94, recall: 0.98 anH—score: 0.96) are better
Fig. 4: A sample probabilistic output obtained for Walkingt—han others. The remaining events, i.e., the walking (precision:

running event (dataset: PETS 2009, 14-16, View-001) alorq)gszl’l_r%(:g": 0'9(1;""”@_3?%%50'88&’ running.(precision: 0'93'.
with ground truth (GT) at Stage 2. recall: 0.84 andF'—score: 0.89) and evacuation events (preci-

sion: 0.85, recall: 0.84 an#'—score: 0.85) are comparable to

Probability

At the third level, a detailed comparison with differenPtners:

methods is provided in Table IV. The comparison is basedIn [66], the high running event classification measure (pre-
on View-001 of our approach. In [14], the test was conducteision: 0.99, recall: 0.99F—score: 0.99) is attributed to
on 1000 frames. Therefore, the events have been divided inioe problem formulation. The classification was formulated
two groups. The first class described to be either running leetween running and splitting instead of walking and running.
walking. The second class contained the remaining events.However, in the proposed and remaining approaches, the classi-
this study, we separated the second division, resulting in thifsgtion is between walking and running. In [67], crowd events
categories for six events. The rationale behind this approagbre classified using Dynamic Texture (DT) features along
is that the merging and splitting events can be separated frauith Nearest Neighbor and SVM classifier. The classification
local dispersion and evacuation events as described earlier. Threshold was set t6.5 and 75% of the dataset was used
results are provided in two stages. As shown in Table IV, &r training. In the proposed approach, the training dataset
Stage 1, the probabilities are built using the definitions of tifeith respect to a particular view) is used for determination of
sub-events and events. The events were then classified bdsatporal parameter. In [14], two classifiers were used: (1)
on the thresholds determined using the mixture of probabilityalking/running events, and (2) merging, splitting, dispersion
density functions at every time instance. In Stage 2, a tempoaald evacuation events. For detection and classification of re-
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suts, abouts different parameters are required. Comparativelgut at critical junctures.
the proposed approach requires temporal paraniégeto be In this work, the PETS 2009 dataset [12] was used and the
determined. threshold parameters were selected as described in Section V-C
The parametet is empirically selected. In [14], an equivausing the dataset (14-16, View-001) for all of the crowd events.
lent of ¢ was set to4, whereas we have selected fas= 5. There are datasets, such as [68], where only abnormal events
A smaller ¢ results in less number of data points to buildre present. The crowd events are only available in the PETS
the probability distribution in which case the results will b2009 dataset [12]. Two things should be noted here: (1) in this
instantaneous, i.e., the output could fluctuate arbitrarily. Qvork, we used only one camera view (View-001, 14-16)—
the other hand, a largérresult in influencing the probability because the literature in crowd monitoring adopts View-001
distribution of the large proportion of elapsed events. As as an optimal camera position for visual surveillance. The
rule of thumb in finding the, one can count the number ofresults for the other views and timings were obtained using
frames an event occurs and calculate time using the frathe same model parameters. Therefore, we call the proposed
rate. This rule can be applied for finding shorter events iifiethod to be semi-supervised; (2) when we view an event
required. For longer events, the effect of influencetof from different cameras, the features used will have an impact
relatively less compared with shorter events. In case of longer the detection of events. For example, splitting an event
events, a smallet would yield accurate results, whereas along thez—plane may not appear to be splitting at all from
largert would delay the event detection. In case of short@another view. Likewise, the features for the other events will
event following a longer event, smallgris preferable to change.
avoid delayed detection of smaller event, which otherwiseln [69], [15], optical flow features were used for anomaly
would result in high classification errors. In general, keepirdgtection using histograms of optical flow. However, the opti-
t smaller is the best way to avoid detection and eventually tkal flow values vanish for a static crowd in the scene. We used
classification errors. the GMM [70] for background modeling followed by optical
The chief goal of designing an automated event detectiflow for crowd detection. Future work in this direction includes
system by reducing human intervention is achieved using tterivation of efficient velocity vectors in crowded scenes with-
proposed method. From a video surveillance perspective, mangt tracking in Riemannian manifolds. A further improvement
ing and dispersion events are more important for behavioralprocessing and feature space can be introduced with the help
analysis than walking and running events, which are usuatij manifold learning while detecting the events. Nevertheless,
dependent on multiple factors. For example, in the event OfFM can still be utilized for probabilistic estimation of crowd
crowd panic in response to possible injury or threat to humawents in almost real-time.
life at a stadium, the proposed probabilistic model indicates Several optical flow based methods have tried to address
the merging and dispersion (indicators of panic) immediatethjs issue by assuming that the vectors will be inconsistent
which is an indispensable model compared with existimy undefined. Methods, such as [71], [72], [73], have tried
methods. We separated the merging/splitting events from lotaladdress the occlusion problem. These methods have been
dispersion/evacuation events to facilitate the detection of exacbposed based on the assumption that occluded pixels will
events in video surveillance applications. Further improvemdre visible in the next frame. The occlusion involving humans
was made by combining the regular event with local dispersias, different compared with objects, such as, cars that are
because we found a significant overlap between them. rigid with a uniform motion. Unlike these, crowd motion
One of the potential reasons for low detection rates is thatludes body parts moving in different directions and at
during occlusion, the tangent vectors estimated are indistitifferent velocities. Secondly, because the velocity of a rigid
guishable for walking and running events. The result can bbject is constant most of the times, the flow vectors can be
ameliorated with the utilization of group tracking techniquesalculated even if the occluded pixels are not observed using
to estimate the group velocity. Likewise, if the tracking athe consecutive frame. However, in case of humans this is
gorithms are lightweight and sufficiently fast, region-baseatbt possible because of nonuniform body movements. During
optical flow can be implemented to improve running andcclusions, there is no defined pattern of vectors that could be
walking events. The proposed approach performs better thaged for classifying the subevents. Therefore, it is not possible
the existing methods in merging, splitting and dispersicexactly to determine the occlusion and its effects in terms of
because of the inclusion of localized group detection using teebevents.
Riemannian connection in the OFB, which is one of the novel The walking and running events directly use the probability
aspects of the proposed approach. The parallel transportditribution of the length of tangent vectors. These vectors are
flow vectors provides us with a method to transport the vectdreonsistent at the boundaries of the occlusions. Therefore,
from one tangent space to another. In this way, the localizatitire events will be misrepresented. However, for events like
of the crowd group and its direction is invariant to the locatiomerging and splitting, the geodesic distance between tangent
of the center of the group mass, which is the second noy#anes and the crowd direction (derived by using Riemannian
aspect of the proposed approach. Some approaches use crmavhections and parallel transport) are used. The geodesic
movement direction vectors that are inadequate at many tintéstances, estimate the distances between patches (groups of
because of the inability to capture the localization featurgsople), which is not affected by the occlusion. Similarly, the
and thus, there is the possibility of incorrect detection. Thisowd direction estimates the principal direction of the crowd,
result may not occur in all instances, but it can never be ruladhere vector directions are used as opposed to the length.
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This will not be affected by occlusion because when there gng] S. Nagaraj, C. Hegde, A. Sankaranarayanan, and R. Baraniuk, “Optical
occlusions in a group of people, the majority of the vectors

will be pointing in the crowd direction.

[12

flow-based transport on image manifoldépplied and Computational
Harmonic Analysisvol. 36, no. 2, pp. 280-301, 2014.

] J. Ferryman, “PETS 2009 benchmark data,” http://www.cvg.reading.ac.

In this work, we assume that only humans are present. uk/PETS2009/a.html, 2009, [Online; verified on 28-June-2015].
The PETS 2009 dataset [12] contains only humans and itl33]

the only dataset where crowd events have been procedurally
acquired. The classification of people, animals, vehicles, etc. (DICTA).

A. S. Rao, J. Gubbi, S. Marusic, and M. Palaniswami, “Probabilistic de-
tection of crowd events on riemannian manifolds,2id14 International
Conference on Digital Image Computing: Techniques and Applications
IEEE, 2014, pp. 1-8.

has not been included. Future work will involve incorporatint}“] Y. Benabbas, N. lhaddadene, and C. Djeraba, “Motion pattern extraction

this aspect. Furthermore, when the crowd approaches the

camera, the length of the tangent vectors increase, affectjng
the performance. To an extent, this limitation is overcome by

the threshold selection (as described in Section V-C) technqug}

and the inclusion of the temporal filter in the Stage 2, but an
automated view normalization technique would be an ideal

solution. In addition, automated crowd event detection with;

adaptive learning has potential in video surveillance applica-
tions.

Crowd event detection and classification is key to undeyg

[18]
VI. CONCLUSION

standing behavioral characteristics of a crowd. In this regard,
we developed a probabilistic detection of crowd events (rugol
ning, walking, merging, splitting, local dispersion and evacua-
tion) on OFM using Riemannian manifolds. A motion-based,
probabilistic framework for detection of crowd events has bed#]
proposed. In particular, a new algorithm to detect walking
and running events has been reported, which uses optiea]
flow vector lengths in OFM. Additionally, the framework
delivers a system to detect merging and splitting events, whi
uses Riemannian connections in the OFB. The algorithm
resulted in excellent performance in the detection of all events

and outperformed other algorithms in merging, splitting arlg®

dispersion.
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