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Abstract—Real-time environment monitoring and analysis is an
important research area of Internet of Things (IoT). Understand-
ing the behaviour of the complex ecosystem requires analysis of
detailed observations of an environment over a range of different
conditions. One such example in urban areas includes the study of
tree canopy cover over the microclimate environment using het-
erogeneous sensor data. There are several challenges that need to
be addressed, such as obtaining reliable and detailed observations
over monitoring area, detecting unusual events from data, and vi-
sualizing events in real-time in a way that is easily understandable
by the end users (e.g., City Councils). In this regard, we propose
an integrated geovisualization framework, built for real-time
wireless sensor network data on the synergy of computational
intelligence and visual methods, to analyze complex patterns of
urban microclimate. A Bayesian maximum entropy based method
and a hyperellipsoidal model based algorithm have been build
in our integrated framework to address above challenges. The
proposed integrated framework was verified using the dataset
from an indoor and two outdoor network of IoT devices deployed
at two strategically selected locations in Melbourne, Australia.
The data from these deployments are used for evaluation and
demonstration of these components’ functionality along with the
designed interactive visualization components.

Index Terms—Internet of Things (IoT), Smart City, Urban
Microclimate, Anomaly Detection, Spatio-temporal Estimation,
Geovisualization.

I. INTRODUCTION

Rapid adaptations of Smart City and Internet of Things
(IoT) technologies are assisting in urban planning to ensure
sustainable cities and lifestyles [1], [2]. Wireless sensor net-
work (WSN) is one of the most important elements of the
IoT paradigm which behaves as a digital skin and provides
flexible platform to collect data for environmental modeling.
In particular, monitoring Urban Heat Island [3] (UHI) effect
is important for city councils and government agencies to plan
and maintain a healthy Smart City environment.

Increase in human activities, modern urbanisation and sub-
sequent loss of vegetation in the urban landscape have been
contributing to the increase of temperature in cities by several
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degrees higher than the surrounding suburbs, particularly at
night. This phenomenon is known as Urban Heat Island
effect [3]. In cities, the heat is stored in non-homogenous
proportions based on the characteristics of the surrounding
environments, whether considering buildings, parks, public
places, and other infrastructure [4]. The result is a considerable
variability of meteorological parameters such as temperature
in the immediate surrounding suburbs, raising the challenge of
how best to capture these variabilities in fine details. Increasing
the number of trees to reduce the UHI effect is a preferred
solution [5], but achieving cost-effective solution and better
environmental health benefits require analysis of how different
trees, buildings, and parks affect their microclimate. For exam-
ple, the Melbourne city council’s urban forest team recognizes
the need of tree species selection based on their cooling
benefits, water status, soil conditions, and other parameters [6].

There are a few experimental studies [7]–[10] that used
modelling based methods to investigate the ecosystem pro-
vided by tress and urban forest. Urban microclimate [11] is de-
scribed by various parameters, such as humidity, temperature,
daylight levels, and wind speed. Modelling of any complex
ecosystem, which is impacted by several parameters, is a
challenging task and requires the domain-specific knowledge.
Thus, it triggers the need for experimental tools to analyze
the effects of several factors on microclimates, and use them
in model adjustment [12] accordingly. Most city councils
and health agencies use geographic information system (GIS)
based visualization tools to analyze the urban climate. The
visualization tools [13], [14] for climate analysis are offline
and limited to scientific data obtained from meteorological
station. They are univariate, i.e., they show only one variable at
a time. Such approaches are useful in information presentation,
but have severe limitations in finding complex patterns from
data that span across multiple dimensions.

There are three main challenges in understanding the rela-
tionship between environmental parameters and sensor data:
First, is the lack of detailed observation of environmental
data in real-time. Real-time observations of environment under
different conditions and at higher spatial and temporal reso-
lutions [15] are required for detailed analysis. In many IoT
applications, either a small number of high precision sensors
(in low spatial resolution) or a large number of inexpensive
low precision sensors (in high spatial resolution) are deployed
to reduce the overall deployment cost. Due to unavailability of
data at locations where sensors are not deployed or due to mea-
surement errors/uncertainties present in low precision sensors,
obtaining reliable and detailed observations over a monitoring
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Fig. 1. System overview: Communication flow from Sensor nodes to IoT base-station through ZigBee, then to the NecTAR Cloud via 4G connection, and
finally to the Integrated framework running on Process Desktop for real-time visualization and data analysis using two computational intelligence techniques.

area in real time is a challenging task. The second challenge is
to identify unusual events as patterns from the environmental
data. A wide variety of impacts and interactions are possible at
spatio-temporal domain in an urban environment. Analyzing
voluminous real-time data to identify unusual events automat-
ically is another challenging task. The third challenge is the
joint multi-sensor and multivariate visualization that conveys
real-time microclimate information including geolocation and
time varying sensor data. As more and more data are collected,
the analysis such as pattern findings and decision making from
the data may become difficult and cumbersome. Therefore,
a real-time visualization tool is required that can present
multi-sensor, multivariate data as well as the outputs of any
computational intelligence algorithm in a unified manner so
that patterns can be identified quickly and especially when
data volumes are very large.

To address these challenges, we introduce an interactive,
multivariate geovisualization framework, built on the synergy
of computational intelligence methods and IoT technologies,
for real-time monitoring and analysis of complex patterns in
urban microclimate data.

Our major contributions in this paper are as follows:
1) An interactive, real-time geovisualization framework has

been developed for visualization of joint multisensor
and multivariate, real-time urban microclimate data. This
framework is built on the following two analytical
methods:
• Spatio-temporal estimation: A novel estimation

model, based on the Bayesian maximum entropy
(BME) method, is build in both centralized and
distributed manner to obtain detailed observation of
environmental data in real-time.

• Pattern detection: An anomaly detection method,
based on the hyperellipsoidal models, is utilized to
identify unusual patterns from environmental data.

2) We demonstrate the performance of the two analytical
algorithms on real-time and historical data, obtained
from an indoor deployment (IBRL [16]) and two out-
door deployments using IoT sensors deployed at two
strategically selected locations in Melbourne, Australia.
A small number of low cost sensors were deployed
at both locations to investigate the effectiveness of
BME based estimation technique to obtain reliable and
detailed observation using limited number of sensors’
measurements.

3) We also demonstrate the usefulness of our geovisual-
ization framework for identifying interesting patterns,
which are verified by urban forest team of Melbourne
city council.

To the best of our knowledge, this is the first integrated
visualization framework, built on the real-time analytical
methods as backbone, to analyze complex patterns of urban
microclimate. This analytical tool is intended to be used in
future urban design and planning interventions, specially for
the selection and positioning of trees in urban spaces. The
proposed integrated framework is generic and can also be used
for other Smart City applications.
A. Integrated Visualization Framework

We present an integrated visualization framework for real-
time urban microclimate monitoring and analysis, as shown
in Fig. 1. In the proposed framework, the real-time data
are collected from our IoT deployment. The details of IoT
deployment is provided in Section II. The integrated visual-
ization framework addresses three main challenges as follows:
The first challenge is the lack of detailed observation of
environmental data. To overcome this problem, a Bayesian
Maximum Entropy (BME) [17], [18] based spatio-temporal
estimation model is implemented. This technique can incor-
porate the measurement errors/uncertainties of low cost, low
precision sensors to yield reliable estimates. The detailed
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(a) (b)

Fig. 2. (a) Fitzroy Gardens with five sensor locations: Sensor node and base station deployed at the Fitzroy Gardens, along with their node IDs. (c) Dockland
Library with four sensor locations: Sensor nodes and base station deployed at the Dockland Library, along with their node IDs.

explanations of BME method is provided in Section III. The
second challenge is to identify the spatio-temporal patterns
(unusual) from the observed data automatically. This problem
is addressed by utilizing hyperellipsoidal models [19] based
distributed anomaly detection algorithm, which is discussed
in Section IV. In Section V, we examine the utility of both
algorithms on historical and real-time data obtained from our
IoT deployment, followed by their computational complexities
in Section VI. To address the visualization (third) challenge,
a new geovisualization framework with real-time and user-
interactive capabilities is developed that incorporates multi-
sensor and multivariate data. In addition to real-time data
visualization, it also incorporates spatio-temporal estimation
and anomaly detection algorithm as backbone, and facilitates
visualization of their outputs. The geovisualization framework
is discussed in Section VII, followed by conclusion and future
work in Section VIII.

II. EXPERIMENTAL IOT DEPLOYMENT IN THE CITY OF
MELBOURNE

For this study, an Internet of things (IoT) based networked
devices were deployed in Melbourne, Australia, for real-time
urban microclimate monitoring [20]. To study the long term
micro-scale relation between canopy coverage and environ-
mental parameters, WSNs were deployed at two strategically
selected locations in Melbourne. Five sensor nodes were
deployed at Fitzroy Gardens (where different types of tree
canopies exist) and four sensor nodes were deployed at Dock-
lands Library (where the location is surrounded by buildings,
parks, and Yarra river) to study different urban vegetation. The
tree canopies considered include multiple types — established
tree canopy, mature tree canopy and minimal canopy cover
— based on their canopy cover percentage. The sensor data
collected include temperature, humidity and luminosity mea-
surements collected at 10 minute intervals since December
2014. Fig. 2 shows the deployment locations of the sensor
nodes along with the base stations at Fitzroy Gardens (a) and
Docklands Library (b) in Melbourne.

Low cost sensors, namely the Waspmote [21] wireless
sensor nodes, which are on open source wireless sensor
platform developed by Libelium, were deployed to measure
temperature, humidity and luminosity parameters. Fig. 1 shows
the end-to-end system overview of the deployment. The Plug
and Sense module creates a packet at every 10 minute intervals

using the sampled sensor data, and transmits it to the base
station via ZigBee protocol. Meshlium was used as the base
station to collect the data from all the sensor nodes and save
them in a Cloud server. Data were transmitted to an external
Cloud database using a 3G/4G wireless modem. We used
the Cloud infrastructure provided by the NeCTAR (National
eResearch Collaboration Tools and Resources [22]) for this
purpose. This research cloud provides high capacity storage
for the real-time (streaming) data feeds. In order to make
the real time data collected from the deployment accessible
to the general public via the Internet, the aggregated data is
periodically copied from the NeCTAR Cloud to the City of
Melbourne’s (CoM) Open Data platform servers [23]. The
real-time data from both the deployments have been used
in evaluating the spatio-temporal estimation and anomaly
detection algorithms for microclimate analysis. In the next
section, we discuss the Bayesian maximum entropy based
estimation method in detail.

III. DETAILED OBSERVATION USING ESTIMATION

The detailed observations of the monitored phenomena over
an area of interest can be obtained in the form of overall
spatial map. In continuous monitoring applications, such as
environmental monitoring [24], [25], inexpensive IoT sensors
are used in order to reduce the deployment cost. Generally,
these low-cost, low-precision sensor nodes have limited mem-
ory and processing power. Obtaining a reliable and detailed
observation of a geographical area in the form of overall spatial
map (estimates), using measurements of these inexpensive
sensors, is a challenging task. Several interpolation techniques
have been used to obtain spatial map of urban microclimate
data. Jeganathan et al. [26] used Inverse Distance Weighting
method for offline spatial interpolation of weather station
data. This method does not incorporate the spatial covariance
information [27] effectively. Sánchez et al. [28] used Kriging
method for offline spatial interpolation of urban transect data.
Both the studies have been done for offline analysis of weather
station data. In addition, both algorithms do not consider the
measurement errors [17] of low-precision sensors in estima-
tion. We employ a Bayesian maximum entropy (BME) [17]
based spatio-temporal estimation method to estimate the value
of the microclimate parameters at unobserved locations. BME
is a spatio-temporal analysis and mapping technique, which
can incorporate the measurements errors of low precision

Final version available at: http://dx.doi.org/10.1109/JIOT.2017.2731875



4 IEEE INTERNET OF THINGS JOURNAL

sensors in the form of interval or probabilistic data. Below
we discuss the BME technique and its ability to integrate low
precision sensor measurements as soft data.

Environmental data obtained from various sensor nodes are
spatio-temporal in nature, thus each point p in this continuum
can be represented by space and its time information as
p = (s, t), where s is the spatial location represented by
longitude and latitude, and t is the time. Given a set of
N sensor nodes at locations S = [s1, s2, .., sN ], realization of
random variable X (e.g., temperature) at these locations can
be represented as Xdata = [X1,X2,X3, ..,XN ]. For real-time
visualization of spatio-temporal map within the geographical
area of interest, we use the BME based scheme for estimating
the values at unobserved location. In particular, we estimate
the realization XE of a random variable at a location sE ∈ sest ,
where sest is a set of locations where estimation is to be
performed), and then a spatio-temporal (ST) map is generated
using the realizations Xmap = [X1,X2,X3, ..,XN ,XE ] at loca-
tions Smap = [s1, s2, .., sN , sE ]. The total physical knowledge
K regarding a natural process, used by BME [17] to estimate
the values, comprises two prime knowledge bases: (1) general
knowledge KG, such as law of sciences, structured patterns,
summary statistics; (2) specificatory knowledge, KS, obtained
through experience with specific situations and associated with
physical data points. Physical data points may consist of hard
data points Xhard , which are exact measurements of natural
process with probability one such as high precision sensor
measurements; and soft data points Xso f t , which can be an
interval or a probabilistic type of data, that capture uncertain
knowledge, intuition or low precision sensor outputs etc., such
that Xdata = {Xhard ∪Xso f t } ⊂ Xmap . BME technique uses
three stages for knowledge acquisition and processing, as
follows: (1) Prior stage, which starts with the basic set of
assumptions and general knowledge, KG, with the goal of prior
information maximization; (2) Pre-posterior stage, which uses
specificatory knowledge, KS, including hard and soft data; and
(3) Posterior stage, in which the knowledge from prior and
pre-posterior stages are integrated and used with the goal of
posterior probability maximization.

In the prior stage, the expected information contained in the
prior probability distribution function (pdf) is defined using the
Shannon’s information measure [17] as follows

E (In f oG[Xmap]) = −
∫
ΦG(Xmap ) logΦG(Xmap )dXmap, (1)

where ΦG(Xmap ) is the prior pdf model, which refers to
knowledge KG before any specific knowledge base, KS, has
been taken into consideration, and E (·) denotes the expectation
operator. The shape of the prior pdf is derived by maximizing
the expected information which takes the following constraints
into consideration [17] :

E (gα[Xmap]) =
∫

gα (Xmap )ΦG(Xmap )dXmap, (2)

where α = 0,1,2...Nc and gα are known functions of Xmap

with g0 = 1, E (g0(Xmap )) = 1, and Nc is such that stochastic
moments, that involve all p = (s, t) points, are included.

In this work, mean X̄map (p) and covariance functions
of sensor measurements were used as general knowledge.

The space-time variability of X̄ is described in terms of a
centered covariance function as: Cmap (γ, τ) = E [(Xmap (p)−
X̄map (p))(Xmap (p′) − X̄map (p′))]∀p, p′, where X̄map (p) =
E [Xmap (p)],∀p. For any two spatio-temporal points p, p′, p−
p′ = (γ − γ′), (τ − τ′));γ = | |s − s′ | |;τ = | |t − t ′ | |. The γ and
τ are space and time lags respectively, and show that this
covariance is spatially isotropic and stationary in time. Hence,
gα is adapted such that expectation E (g0(Xmap )) defines ST
mean and covariance functions throughout the ST domain
of interest. In this work, a nugget-exponential function [29]
(discussed in Section V-A) is used to model spatio-temporal
covariance structure known as variogram. Variogram (or semi-
variogram) [29] is an experimental function, which is used
to determine spatial correlations in observations measured at
sample locations and time. The optimization for maximization
is performed using the Lagrange multipliers λα . Hence, the
prior pdf can be expressed as ΦG(Xmap ) = H−1eΘG[Xmap ],
where H = e−λ0 is a normalization constant, ΘG represents the
operator processing the general knowledge KG, and is given
by
∑Nc

α=1 λαgα (Xmap ). Similarly, specificatory knowledge KS
is considered in the pre-posterior stage, and the prior pdf
ΦG is updated by means of Bayesian conditionalization. In
this paper, we use interval I = [l,u] for expressing the soft
data, where interval ranges are defined using measurement
error/uncertainty of low precision sensors.

At the posterior stage, the updated pdf is a conditional
pdf, and can be expressed in terms of the prior pdf
and specificatory knowledge considered at pre-posterior
stage as ΦK(XE |Xdata ) = J−1ΘS[ΦG(Xmap ),Xso f t ],
where ΘS[·] represents the posterior operator that
incorporates the soft data. For interval soft data,
ΘS[Xso f t,ΦG(Xmap )] =

∫
I
ΦG(Xmap )dXso f t, and J

is the normalization parameter given as [17],
J = ΘS[Xso f t,ΦG(Xdata )] =

∫
I
ΦG(Xdata )dXso f t . Estimate

at sE can be obtained by maximizing the posterior pdf with
respect to XE such that BME [17] estimate minimizes the root
mean square error (RMSE). In this paper, the mean estimate
is used to find the realization of random variable at arbitrary
location which is given by XE,mean =

∫
XEΦK(XE )dXE .

Next, we discuss the anomaly detection algorithm for de-
tecting unusual and interesting events in the spatio-temporal
data collected from the network.

IV. HYPERELLIPSOID BASED ANOMALY DETECTION

Most of the unusual patterns appear as anomaly or outlier in
the spatio-temporal data. Several methods [30], [31] have been
proposed for anomaly detection in sensor network, but most of
them are unable to detect anomalies in real-time [19] with low
computational and communication complexity. TraVis [32] is
the only visualization framework which uses clustering for
classification of urban transects. However, it is limited for
weather station data and suitable for offline analysis. One of
the challenges in analyzing voluminous real time data is to
identify the unusual events, called as "anomalies", automati-
cally, and in a timely manner. The proposed framework uses
an energy efficient and distributed anomaly detection algo-
rithm [19], developed using multiple hyperellipsoidal models.
This anomaly detection algorithm has significantly less com-
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munication overhead, memory and computation complexity,
which makes it suitable for resource-constrained WSNs.

Consider a set of N sensor nodes V= {Vj : j = 1...N }, having
realization of random variable X (e.g., temperature). At every
time interval ∆i, each sensor node Vj measures data vector x j

i .
After a window of n sensor measurements, each sensor has
collected a set of measurements as X j = {x

j
i : i = 1...n}. The

aim is to find the local (each sensor measurements) and global
(measurements from multiple nodes) anomalies in the col-
lected data. A summary of the proposed distributed approach
is presented below (a network of sensors is considered to have
a hierarchical topology, where a parent and child relationship
exists).
• Local anomaly detection: Each node Vj performs hy-

perellipsoidal clustering on its data using our HyCARCE
(Hyperellipsoidal Clustering algorithm for Resource-
Constrained Environments) algorithm [33]. This results
in a set of multiple hyperellipsoids E j for each sensor
node (Note that the number of clusters is determined
algorithmically). Then the anomaly detection algorithm
(presented below) is applied to the hyperellipsoidal clus-
ters E j to identify the locally anomalous hyperellipsoids,
and subsequently the locally anomalous data vectors of
that node.

• Global anomaly detection: Following steps are per-
formed to detect global anomalies.

1) Each node Vj sends a summary of its hyperellip-
soids to its immediate parent node (in the form of
tuple < m, A, ID >, where m, A, and ID are cen-
troid, (inverse) covariance matrix (positive definite),
and cluster ID of ellipsoid respectively. Geometri-
cally, a hyperellipsoid in h − space is represented
by e(A,m,r) whose all points are constant A −
distance(r) from its center m, where r is also called
as effective radius of ellipsoid. In our experiment,
we consider h = 2 i.e., shape is ellipse.

2) The parent node combines all hyperellipsoidal clus-
ters from its children with its own cluster. Then,
this parent node sends summaries to its immediate
parent. This process continues up to the gateway
(Base-station), where anomaly detection algorithm
is performed to detect globally anomalous hyperel-
lipsoids.

3) Summary of anomalous global hyperellipsoidal
clusters are communicated back to all the nodes in
network. Then, each node identifies corresponding
global anomalous data using this summary informa-
tion.

The anomaly detection algorithm consists of two components:
(1) similarity measures for pairs of ellipsoids, and (2) a
mechanism to score the "outlierness" of the hyperellipsoids.
Similarity Measure

An ellipse e = (A,m,r) can be constructed by tracing
the curve whose distance from foci f1 and f2 is a
positive constant. Let D be the similarity based on focal
distance between two ellipsoids ea = (Aa,ma,ra ), and
eb = (Ab,mb,rb ). If (αm, αM ) are the minimum and maximum

eigenvalues of A corresponding to orthogonal eigenvectors
(um,uM ), the focal segment f1,2 with endpoints f1 and f2
is given by m± 1/2

√
(αm −αM )/αmαM . The focal distance

between ea and eb is defined as the average of following
four default distances: δ1 = min{d( f a1 , f b1 ),d( f a1 , f b2 )}, δ2 =

min{d( f a2 , f b1 ),d( f a2 , f b2 )}, δ3 = min{d( f b1 , f a1 ),d( f b1 , f a2 )}
and δ4 = min{d( f b2 , f a1 ),d( f b2 , f a2 )}, where d(x− y) = | |x− y | |
is the Euclidean distance between x and y. For one or
more of the values from above distances, if the orthogonal
projection of f for each foci f falls on the opposing focal
segment then default distance can be replaced by this distance,
otherwise minimum distance between f and two opposing
foci can be used in distance calculation. The focal distance
between ea and eb is the average of these four distances:
d(ea, eb ) = 1/4(

∑4
k=1 δk ). For the case h > 2, refer to [19].

Ellipsoidal Neighbourhood Outlier Factor (ENOF)
Here the outlier scoring mechanism is presented to iden-

tify outlying ellipsoids. Consider an ellipsoid ea ∈ E, where
E = {ei : i = 1...ρ} is a set of hyperellipsoids, has a set
of k nearest neighbour ellipsoids denoted by N Nk (ea ). A
reachability distance RDk (ea, eb ) of the ellipsoid ea from eb
is defined as the maximum of the focal distance d(ea, eb )
and the kd(eb ), where kd(eb ) is generalized focal distance
of ea to the kth nearest neighbour ellipsoid of eb . It means
that the ellipsoids belonging to the kth nearest neighbours
of eb are considered to be at the same distance. Neigh-
bourhood reachability density N RD(ea ) of the ellipsoid ea
can be defined as the distance at which ea can be reached
from its neighbours i.e., reciprocal of the average reachability
distance of ellipsoid ea from its neighbours, denoted as,
N RD(ea ) = 1/ 1

NNk (ea )
∑

eb ∈NNk (ea ) RDk (ea, eb ). By com-
paring the neighbouring reachability densities with those of
the neighbours, the ellipsoidal neighbourhood outlier factor
ENOF (ea ) can be obtained as:

ENOF (ea ) =
1

N RD(ea )
.

∑
eb ∈NNk (ea )N RD(eb )

N Nk (ea )
(3)

This is a ratio between the average neighbourhood reach-
ability density of the neighbours and the ellipsoids’ (ea )
own neighbourhood reachability density. It can be inferred
that ENOF (ea ) becomes 1 when ea becomes comparable
to its neighbouring ellipsoids, thus it is not an anomaly.
This ratio becomes less than 1 when ea lies in a denser
region. ENOF (ea ) becomes significantly higher than 1 for
anomalous ellipsoids. Generally, a threshold of some higher
value than 1 is required to declare an ellipsoid as anomalous
depending on the dataset. For ENOF (ea ) > T H , an ellipsoid
ea will be considered as ’anomalous’, and ’normal’ otherwise,
where T H = 1+ z×SDENOF is the threshold, SDENOF is the
standard deviation of the ENOF scores for the set of ellipsoid
E, and the parameter z ∈ {1,2,3} determines the sensitivity
of the detector. In particular, an ellipsoid that belongs to a
dense group of ellipsoids, has a small outlier score than an
ellipsoid that is far from this group of ellipsoids. In order
to demonstrate the anomaly detection procedure, a synthetic
dataset consisting of anomalous ellipses in between two groups
of normal ellipses is created as shown in Fig. 3 (a). A total of
32 ellipsoids are created, and the ENOF values obtained using
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(a) (b) (c)

Fig. 3. Hyperellipsoid based anomaly detection for synthetic dataset; (a) Ellipses with numbers, (b) Ellipses with ENOF values: anomalous ellipses (in red
colour) are in between two groups of normal ellipses (in blue colour), (c) ENOF values: Threshold= 2.8653, for k = 5, z = 1.
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Fig. 4. (a) High-precision (hard) and low-precision (soft) sensors nodes for IBRL data. Nodes ID [16] with *(blue) represents hard sensor nodes and nodes
ID with +(red) are soft sensor nodes; (b) Average RMS error of all sensor nodes (IBRL dataset) for BME and simple kriging.

k = 5 and z = 1 are shown in Figures 3 (b) and (c). Ellipses
which have ENOF values more than threshold value of 2.87
(obtained using T H calculation equation) are marked in red.

V. ESTIMATION AND ANOMALY DETECTION ON REAL IOT
DATA

A. Spatio-temporal estimation on historical and real-time data

We first evaluate the performance of our scheme on a large
real-life sensor network (IBRL) dataset, and then demonstrate
its applicability for real IoT dataset obtained from our deploy-
ment. Both centralized and distributed approaches of BME are
implemented in our framework. In the centralized approach,
all the computations are performed at the central location,
whereas, in distributed (decentralized) approach, each node
estimate its value using neighbourhood sensors’ measurement.
For the evaluation of the estimation algorithms, we used the
distributed approach of BME and Kriging at each node.

1) Intel Berkeley Research Laboratory (IBRL) Dataset

This is a publicly available WSN dataset [16] consisting
of around 2.5 million readings collected between February
28th 2004 and April 5th , 2004. This deployment consists of
54 sensor nodes measuring humidity, temperature, luminosity
and battery level at a sampling interval of 31 seconds. The
measurements from sensor node IDs 5,15,18 were noisy,
hence were not considered in experiment. As temperature and
humidity are slowly varying phenomenon, we resample them
at 10-minute interval by averaging them in 10-minute window.
The experiments were carried out on a total of 1200 samples
(around 8 days) of temperature values.

As, we do not have the classification of high and low
precision sensors for this dataset, we considered 10 sensor
nodes distributed at even spatial locations as high precision
sensors, and the remaining as low precision sensors. The
spatial arrangements of hard and soft sensors for IBRL WSN
deployment is shown in Fig. 4 (a). In order to make remaining
sensor nodes as low-precision sensors, we preprocessed their
measurements in such a way that their measurement lies within
some interval I = [l,u], which means the measured values
are of low precision and lies within the lower l and upper u
limits with probability 1. A larger interval value corresponds
to a higher measurement error, i.e., less precise measurement.
Since the IBRL data do not have the information about the
measurement errors, we added some uncertainty levels into
the original measurements to make them as low-precision
measurements, i.e., soft data. These levels were determined by
the widths of the interval Ii = [x− uδ(si ),x+ uδ(si )], where
u ∈ (0,1) is a random number, i is the soft sensor ID, and
δ(si ) = 0.2 for randomly selected 13 sensors, 0.4 for the next
13 random selected sensors, and 0.5 for remaining soft sensors.

In this work, mean and covariance functions (as mentioned
in Section III) were used as the general or the prior knowledge.
The mean was computed assuming a uniform distribution. The
next step is to compute the experimental variogram [34] in
order to obtain the covariance estimates at sample locations.
This process includes fitting a wide sense stationary (WSS),
spatially isotropic, spatio-temporal covariance model to the
real data in order to compute the variogram of the sensor
measurements. Since we performed the estimation iteratively
in time domain, only spatial covariance model was used to
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Fig. 5. (a) Gaussian distribution of sensor measurements; (b) Performance of
BME and Kriging based on root mean square error (RMSE) for Fitzroy data.

fit the data. Based on the best fitting, the nugget-exponential
model was chosen as the optimal variogram model, as depicted
by the equation Cmap (γ) = C0 +C[1− exp(−3γ/as )], where
C0 is a constant (nugget) due to nugget effect which raises the
whole theoretical semivariogram by C0 units, as is the distance
at which samples become independent of each another, called
as the range of a sample, and C is the sill value of Cmap (γ),
at which the semivariogram graph levels off. The variogram
parameters obtained from optimal fitting are sill = 0.587, range
= 24.35 and nugget = 0. This variogram model is used in
the BME [35] for estimation. In the second experiment, all
measurements from the weather station and five sensor nodes
from the Fitzroy Gardens were considered as hard data.

Fig. 4 (b) shows the comparison of the average RMS error
for each sensor node over the entire duration of the experiment,
for BME and simple kriging. It can be clearly seen that BME
method provides the lower RMS error value for almost every
sensor node. The average RMS error for BME and kriging
based methods over all the sensor nodes for the entire duration
of the experiment was 0.80 and 0.95 respectively. One point
to note is that though the BME based method outperforms
the Kriging based scheme, the difference between the average
RMS error is small. The main reason was that this experiment
was conducted in a controlled environment (office), hence the
readings of all the sensors are pretty close to each other, which
do not cause much difference in performance for both the
methods. For outdoor IoT deployment, BME based algorithm
is expected to perform much better than the Kriging method,
where a higher variance between the measurements of each
sensor is expected. Next, we discuss the experiments with
outdoor deployment data.
2) Urban microclimate data from IoT deployment

The data collected from the deployment in the City of
Melbourne were used for urban microclimate analysis. Both
real-time and historical data of temperature, humidity and
luminosity measurements collected between 14th December

2014 and 22nd May 2015 were used in the experiments. A
combined total of approximately 60,000 measurements have
been collected during this period.

Spatial estimation procedure is performed to generate a real
exposure map of climate parameters over the complete study
area for appropriate analysis. Two experiments were performed
using temperature measurements collected from the sensors
deployed in the Fitzroy Gardens during a week period starting
from 17th December 2014 to 24th December 2014. In the
first experiment, weather station’s data (located nearby the
Fitzroy Gardens) are considered as the hard data, and the
measurements from the five deployed (low precision) sensors
are considered as the soft data (of interval type). The mea-
surement errors of (soft) sensor nodes can be used to derive
the interval value for each of them. One of the ways to obtain
this is to take multiple measurements at any location under
the same environmental condition, and then fit a Gaussian
distribution model to them. This will provide a means to obtain
the measurement error (1.0 in the figure) as shown in Fig. 5
(a). Accordingly, the interval value for each soft sensor is
obtained as 0.5, and used in subsequent computations. The
values of variogram parameters cs and as were chosen as 0.42
and 20.3297 respectively. These variogram parameters were
chosen such that they well represent the data within the given
geographical area. In the second experiment, all measurements
from the weather station and five sensor nodes from the Fitzroy
Gardens were considered as hard data.

As we do not have ground truth information at low-precision
sensors’ location, we assumed actual measured values as
ground truth for evaluation. Then, these actual measurements
were preprocessed into interval values (as mentioned for
IBRL data) based on their measurement errors (0.5) to make
them as soft data. Evaluation of the estimation algorithm
was performed by comparing the ground truth value (actually
measured) at any sensor location with the estimated value at
that location using measurements of other sensor nodes in the
neighbouring locations.

The root mean square error (RMSE) was computed to evalu-
ate these estimates for two different scenarios: (1) considering
both hard and soft data (2) considering only hard data. In
the later case, the BME scheme reduces to a specialized
scheme known as the Kriging [36]. The second approach is
less computationally expensive due to only using hard sensor
for data processing. Fig. 5 (b) shows the RMS values for both
BME and Kriging operations. The RMS error is observed
to be lower for BME estimation within the region. Thus,
the BME was used to produce real-time spatial estimates at
any arbitrary location, and incorporated into our visualization
framework. When a user clicks at any point within the GIS
map in our visualization application, the corresponding spatial
location is fed to the estimation algorithm as an estimate
location sE to compute the estimate XE using the hard data.
i.e., [X1,X2,X3, ..,XN ]. As shown in Fig. 6 (c), the estimated
value with variance can be seen on the screen as well as at
the place where the mouse pointer is placed, where the sensor
nodes are not present. An additional option to view the heat
map is also provided in the visualisation framework. These
heat maps have been obtained using the BME, and can be
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(a) (b) (c)

Fig. 6. Interactive real-time geovisualization for spatial estimates using the specialized version of BME to visualize spatio-temporal map of the complete
study area: (a) heatmap of spatial estimates of temperature measurements in Fitzroy Gardens (b) heatmap of spatial estimates of humidity measurements
in Docklands Library , and (c) an underlying GIS based framework, where estimation of any climate parameter at a location can be seen (in real-time) by
hovering the mouse. It shows spatial location along with the estimated value and estimation variance.

used to analyse microclimate of different canopies. Fig. 6 (a)
shows the estimated heat map of temperature over the region
of the Fitzroy Gardens. Among the five sensors nodes, while
the region near node 501 and 507 was relatively warm because
it is near to road (Clarendon street) and have less vegetation,
the region near node 508 was coolest due to its deployment
under mature canopy cover (more shade). Fig. 6 (b) shows
the estimation heat map of humidity over the region of the
Docklands Library. It can be seen that node 509 shows more
humidity (in yellow) as it is situated near the Yarra river, while
node 510 shows lowest humidity as it is situated near the
building and road pavement.

B. Anomaly detection

In this work, distributed anomaly detection algorithm (as
explained in Section IV) was used on the time series data
(temperature and humidity), collected from the sensors in
the Docklands Library deployment, to automatically identify
any unusual patterns in the data. This helps the Melbourne
council’s urban forest team to further analyse the micro-
climate around the canopy at those detected time periods.
The data considered for this analysis were collected from
nodes with node IDs 509, 510 and 511 between the periods
21st December 2014 and 11th January 2015, sampled at 10
minute intervals. Fig. 7 (a) shows the time series plot of the
temperature and humidity values for each node. Each node
data is first clustered using the hyperellipsoidal clustering
scheme. The local anomalies can be found by performing the
ENOF on the ellipsoids obtained at each node level. However,
there is no local anomalies detected for these three nodes in
this experiment (the results are not shown for brevity). To
find the global anomalies, measurements from all the nodes
were considered. Hence, the clusters from all the nodes were
combined to perform the distributed anomaly detection. The
results are shown in Fig. 7. Fig. 7 (f) shows the scatter
(in green) plot of the data from all the nodes and their
corresponding ellipsoidal clusters. The blue ellipsoids are the
normal ellipsoids and the red ones are the detected anomalous
ellipsoids (global anomalies). Fig. 7 (g) shows the ENOF
values obtained for each of the ellipsoids. The threshold TH
(=1.24) used for this scheme is shown as a red horizontal line

in that plot. The parameters used here are z = 2 and K = 6 (20%
of the total no of data points). Fig 7 (b) shows the labelled
time series data (combined) after the anomaly detection is
performed. The normal data vectors are shown in blue and the
anomalous vectors are shown in red. Further, the anomalous
data vectors that correspond to the anomalous ellipsoids shown
in Fig. 7 (g) are highlighted using green arrows for easy
identification. Figs. 7 (c), (d), and (e) show individual node
data and their detected anomalies (in red). It can be observed
that our algorithm correctly identifies the data vectors that
are different from the other nodes’. In here, some of the node
509’s humidity values differ from those of the other two nodes
(see Fig. 7 (a)). Note that, the same pattern was observed in the
BME heat map of Docklands Library region, where the region
near node 509 was bright yellow (more humid). This has been
identified by the anomaly detection scheme automatically. This
demonstrates the algorithm’s ability to automatically identify
the interesting regions in the data collected from several nodes
in the monitored environment.

The estimation heat map and anomalies detected using our
framework are being used by the city council’s urban team
to automatically identify the unusual environmental events,
and then perform a focused and detailed analysis about how
effectively the type of plant and the canopy cover density
are responding to the unusual heating and cooling events in
real-time. Further, they study the influence of the surrounding
environment, such as the building, waterways and road sides,
on the temperature and humidity changes in real time, over
different seasons. Moreover, they aim to develop an app to
assist pedestrians, community and ecology using these real
time data. In the short-term, the detection of anomalous events,
such as high temperatures, will assist in providing pedestrians
with information such as the distribution of the temperature
(or any variable of interest, such as pollution) over the region
and help them move to a safer, cooler or shaded regions
during extreme heat events. In the long-term, the analysis of
the data will be used to make strategic decision about: (1)
increasing the canopy cover (2) increasing the forest diversity,
(3) improving the vegetation health, (4) improving the soil
moisture and water content, and (5) informing the community.
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Fig. 7. Anomaly detection on Docklands data (a) temperature and humidity data from node 509, 510, and 511 (b) labelled data (in blue -normal and red-
anomalies) from all the nodes after performing the anomaly detection, (c) Node 509 data (d) Node 510 data (e) Node 511 data (f) scatter plot of all the
nodes’ data along with their ellipsoidal clusters (blue - normal ellipsoids, red- anomalous ellipsoids) (f) ENOF values of each ellipsoid and the Threshold TH
(shown with a red horizontal line).

VI. COMPLEXITIES

In this section, we briefly analyse the computational com-
plexities of implemented algorithms. There would be a com-
putational overhead of O(N3) for Kriging. The BME approach
improves the estimation accuracy at the cost of comput-
ing multiple integrals for calculating multivariate Gaussian
probability distribution function. In BME, first, regression is
performed in O(N3) to obtain primary estimate from hard
data. Second, a multivariate cumulative distribution function
(cdf) calculation is performed with a time complexity of
O(2k (k − 1)! [37] for k random variables (number of soft
sensors considered in estimation). The third time consuming
part is to find the minima of a single valued function within
a range, which uses a golden section search method with suc-
cessive parabolic interpolation algorithm. The computational
complexity to compute ε-accurate solution at a linear rate is
given by O(log(1/ε )) [38].

A distributed approach of BME and anomaly detection is
implemented in our framework. As only neighbouring nodes’
(of size Nh << N , for a network size N) measurements
will be used for estimation, computational complexity can
be reduced significantly. The distributed anomaly detection
algorithm incurs a maximum computational complexity of
O(n+ ρ(h3+4hρ+ ρk + ρ)) [19]. Furthermore, environmental
physical variables do not change rapidly thus it reduces the
need for fast sampling rate, and hence will not affect the
performance of our framework in real-time IoT applications.

VII. MULTIVARIATE VISUALIZATION FRAMEWORK

An interactive, real-time geovisualization application was
developed using open visualization software called Process-
ing [39]. A distributed approach of BME is designed in

Processing to integrate spatio-temporal estimation with this
visualization application to facilitate real-time visualization
of spatial estimates. This application provides the real-time
visualization of sensor data as well as visualization of spa-
tial estimates at the location where sensors are not present
physically. In addition, user can visualize the real-time data
or historical data within some selected (past) time periods.
Furthermore, user can visualize combinations of environmental
attributes such as humidity, temperature, and luminosity for
any particular sensor or pair of sensors simultaneously (to
compare) with changing visual cues (brightness, blur, colour
gradient) that depend on the attribute values, to understand
and analyze the multivariate patterns and inter-relationships
between these climate parameters.

As each sensor node is surrounded by different tree species
and different canopy covers, the real panoramic view of a
chosen sensor node helps the user to relate the climate data
with the knowledge of actual tree. The brightness of panoramic
view changes as luminosity changes, which assists users to
analyze the tree microclimate under different daylight condi-
tions visually. Canopy cover density is shown visually using
shadows of the animated tree, which changes its diameter
depending on the tree canopy cover percentage and species.
Fig. 8 demonstrates the GIS interactive visualization applica-
tion for microclimate analysis of tree species. Fig. 6 (c) shows
the visualization for spatial estimates of multivariate data. A
video demonstration of these two visualization components in
action can be seen from [20].

Some of the unusual temporal patterns identified by urban
forest team using this framework are presented here. Interest-
ingly, throughout the summer the minimum temperature during
day and night was observed at two different locations. Fig. 9
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Fig. 8. Real-time interactive geovisualization of multivariate data of each
sensor node: Visualization includes spatial information of sensor nodes,
selection of sensor node using marker, panoramic view of selected sensor node
with context information, visualization of microclimate parameters and canopy
coverage, bar plots of all sensor nodes data and time slider to choose real-time
data or time range for historical data. Brightness of panoramic view changes
according to luminosity data, while temperature and humidity are visualized
using color gradient and blur change in tree background respectively.
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Fig. 9. Measurements of all sensor nodes deployed in (a) Fitzroy Gardens,
and (b) Docklands Library.

(a) shows the one week temperature measurements of all
sensor nodes of Fitzroy Gardens. It can be observed that during
the afternoon, the node 508 showed the lowest temperature
(coolest location), while at night, the node 502 showed the
lowest temperature. This is because the node 508 is deployed
under a mature tree, which weakens the solar radiation (strong
in noon) effectively, while the node 502 is surrounded by
minimal canopies, which provide the cool air passages in
the night. Similar type of urban microclimate patterns were
observed in [40]. Similarly, interesting patterns were observed
in humidity measurements at Docklands Library as shown
in Fig. 9 (b). Node 510 and 506 showed lowest humidity
during the day and night respectively. This is because node 510
does not have any vegetation around it, and situated near the

road pavements. Hence, during the day it shows less humidity
(as compared to 506), attenuated due to strong solar radiation
(high sky view), while it becomes relatively more humid in
the night due to its proximity to the Yarra river. The node
509 shows the highest humidity during day and night as it is
very close to the Yarra river and situated near road pavements
besides the Library building. The visual observations from
our application reveal that the microclimate parameters are
significantly influenced by the attributes of urban vegetation.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we present an integrated framework with de-
tailed implementation of an IoT platform that aids in creating
actionable knowledge. BME based spatio-temporal estimation
and hyperellipsoid based anomaly detection algorithm were
used as backbone in our framework to address the three
main challenges in urban microclimate analysis. Since, these
challenges are same for many Smart City applications, the
proposed framework can also be used to analyze other pa-
rameters of interest in a Smart City environment. The pro-
posed framework also includes development of an interactive
geovisualization tool to visualize spatio-temporal data with
integrated algorithm outputs. On micro-level, the visualization
assists in observing urban microclimate for different urban
canopies under different daylight conditions.

Our experimental results on IoT data reveal that, even
using the measurements of a few low-cost sensors and a high
precision sensor (weather station), the BME based estimation
method can achieve reasonably good estimation accuracy.
Therefore, a mix of several inexpensive low-cost sensors with
a few high precision sensors can be used in IoT deployment
for reliable monitoring in a cost-effective manner. Various
interesting patterns have been identified using anomaly de-
tection algorithm, which provide useful information for the
urban forest team of Melbourne Council to perform in-depth
analysis.

From a Smart City perspective, the developed visualization
framework assists general public and children to engage and
explore the data as an educational tool to raise awareness
of environmental issue among citizens. To achieve this goal,
we designed our visualization to enable casual exploration by
allowing public to interact with the environment data via a
touch function on high resolution screen placed in Docklands
Library, Melbourne. This framework has also been developed
in web supporting platform to make it accessible to interested
users and agencies through apps (application).

In the future, we aim to utilize the cloud platform to
perform large scale processing (such as parallel and distributed
processing) on historic data and combine with the real time
data to perform emerging pattern detection and render the
results using our visualization framework.
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