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Abstract—Stroke survivors usually experience paralysis in one
half of the body, i.e., hemiparesis, and the upper limbs are
severely affected. Continuous monitoring of hemiparesis progres-
sion hours after the stroke attack involves manual observation of
upper limb movements by medical experts in the hospital. Hence
it is resource and time intensive, in addition to being prone
to human errors and inter-rater variability. Wearable devices
have found significance in automated continuous monitoring of
neurological disorders like stroke. In this paper, we use ac-
celerometer signals acquired using wrist-worn devices to analyze
upper limb movements and identify hemiparesis in acute stroke
patients, while they perform a set of proposed spontaneous and
instructed movements. We propose novel measures of time (and
frequency) domain coherence between accelerometer data from
two arms at different lags (and frequency bands). These measures
correlate well with the clinical gold standard of measurement
of hemiparetic severity in stroke, the National Institutes of
Health Stroke Scale (NIHSS). The study, undertaken on 32
acute stroke patients with varying levels of hemiparesis and 15
healthy controls, validates the use of short length (<10 min-
utes) accelerometry data to identify hemiparesis through leave-
one-subject-out cross-validation based hierarchical discriminant
analysis. The results indicate that the proposed approach can
distinguish between controls, moderate and severe hemiparesis
with an average accuracy of 91%.

Index Terms—Accelerometry, acute stroke, assistive technol-
ogy, biomedical devices, hemiparesis scoring, pattern recognition,
upper-limb weakness, wearable sensors.

I. INTRODUCTION

STROKE affects 15 million people worldwide every year,
leading to death, disability and massive medical expen-

ditures in patient monitoring1. Stroke often leads to paral-
ysis in one half of the body i.e., hemiparesis [1], which
severely affects the upper limbs by limiting movements and co-
ordination [2]–[4]. During the acute phase of stroke (within the
first few days), reperfusion therapy with mechanical thrombec-
tomy or intravenous thrombolysis is administered to resolve
clots in the blocked artery [5]. Patients with and without early
improvements with such therapy require different forms of
treatment and rehabilitation later [6]. Hence, patients are mon-
itored at regular intervals to assess the efficacy of the therapy
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by monitoring the severity of hemiparesis (improvement or
deterioration).

The clinical gold standard for such assessment is the Na-
tional Institutes of Health Stroke Scale (NIHSS) [7], that is
assigned by studying the strength of a patient’s arms held
against gravity for a predefined amount of time [2]. This
process needs to be carried out repeatedly at regular intervals,
calling for 24x7 supervision by trained medical personnel.
Being dependent on the availability of medical expertise
and manual intervention, this is labour-intensive and can be
potentially expensive, especially in public hospitals where the
doctor-to-patient ratio is skewed [8], [9]. It is also prone
to human errors and inter-rater variability [10]. Additionally,
being single-point measurements, if there is a delay in the
intervention, time-critical identification of deterioration can be
missed [3]. Timely detection of motor deterioration is not only
essential for monitoring the efficacy of reperfusion therapy,
but also necessary to prevent recurrent strokes and post-stroke
seizures [3], [11].

Therefore, an automated system for scoring hemiparesis,
that is independent of continuous specialized medical atten-
tion, has tremendous research importance in acute stroke.
Wearable devices with miniaturized sensors, that can unobtru-
sively and longitudinally measure and track information, can
be beneficial towards the development of such a system [12].
Accelerometers are popular wearable motion sensors that
measure the applied acceleration along a sensitive axis [13].
They are highly reliable for the measurement of frequency and
intensity of human movements with little variability over time.
Patterns of upper limb movements in neurological disorders
like stroke and epilepsy can be analyzed using accelerometer
data acquired from wearable devices [6], [14], [15]. Previous
studies have shown that accelerometry can be used to quantify
the amount of upper limb use in post-stroke hemiparetic pa-
tients using activity count [16], which is lower in hemiparetic
subjects compared to the healthy counterparts. In addition, the
activity count is found to correlate well with different clinical
measures [16].

Various time and frequency domain features from ac-
celerometer data, along with correlation among the sensor axes
have been previously used to predict clinical scores in stroke
patients [17], [18]. However, most of such literature focus only
on activity monitoring in the rehabilitative phase (after the
patient is discharged from the hospital), rather than assessing
the severity of hemiparesis in the acute phase. Additionally,
several sensors are used, which is not possible in view of
the comfort of acute stroke patients. In our earlier work [6],
wrist-worn accelerometer data is used to propose novel indices
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for predicting the severity of hemiparesis, with reference to
NIHSS in acute stroke. The metrics comprise Norm (aver-
age arm activity computed from resultant acceleration), SMA
(normalized sum of Signal Magnitude Area of three axes)
and Energy (normalized sum of squared FFT magnitudes over
each axis) based measures. Kumar et al. [14] introduced a
metric based on pairwise angular cross-correlation between
accelerometer axes from the two arms in a stroke patient as
a measure of hemiparesis. This is motivated by the fact that
the stroke affected arm exhibits limited rotatory movements
compared to the normal arm. However, both these methods
are implemented on a limited patient population and require
long recordings (>1 hour) and expert annotations of NIHSS
for a patient at multiple instants of time from the onset of
stroke up to 24 hours after the attack, for validation of the
methods. Additionally, in [6], no generalized learning model
is developed to predict the severity of hemiparesis for unknown
data. Therefore, there is need for formulating a set of upper
limb movements for shorter periods of time, developing novel
measures of co-ordination between the two arms from them
and automatically grading hemiparetic severity in acute stroke
from a learnt model. Although accelerometry based analy-
sis have previously shown differences between hemiparetic
subjects in acute phase and controls, it has been difficult to
differentiate between different levels of hemiparesis [6].

In this paper, we use wrist-worn accelerometers to record
upper limb movements in acute stroke patients for automated
scoring of the severity of hemiparesis from short-length data.
The clinical motivation behind this study is a wearable based
automated system that would instruct acute stroke patients
to perform short-duration movements (e.g., by audio cues)
and record these along with spontaneous movements. The
objective behind including instructed movements along with
spontaneous movements is that, during periods of rest (e.g.
sleep) arms will show limited (or no) spontaneous movements
even in non-stroke cases; but, that is not indicative of the
presence of hemiparesis. Furthermore, acute stroke patients are
often heavily sedated by medications, and unless instructed,
may not perform any activity at all. Also, the non-dominant
arm will always show lesser spontaneous movements. Thus
a combination of spontaneous and instructed movements,
analyzed at regular intervals can reliably predict the im-
provement or deterioration in patient’s condition and relay
the information to a remote doctor. Hence, the system can
prove to be beneficial for intermittent analysis of hemiparetic
severity avoiding repeated manual intervention by a doctor at
the patient’s bedside.

Towards that direction, in this paper, we investigate a set
of upper limb movements and corresponding accelerometry
features that can discriminate between different levels of hemi-
paretic severity. We hypothesize that such movements will be
almost the same in the two arms of healthy subjects. But, with
increasing hemiparesis, the differences in such movements
between the affected and unaffected arm will increase. We
propose to quantify these differences using accelerometry
features based on relative motion and co-ordination (or the
lack of it) between two arms. Finally, we demonstrate that
our methods can accurately identify hemiparetic severity in a

subject-independent manner from unknown data using pattern
recognition algorithms. The main contributions are:

• Novel experimental protocol comprising spontaneous and
instructed movements to capture upper limb weakness
using only wrist-worn accelerometry

• Novel measures of left and right arm co-ordination using
time and frequency domain cross-correlation on short
length (< 10 minutes) accelerometry data

• Automated classification of wrist-worn accelerometry
data into different levels of hemiparesis with reference
to the clinical gold standard in a hierarchical fashion

II. DATA ACQUISITION

A. The National Institutes of Health Stroke Scale (NIHSS)

NIHSS is a 42-point scale used as the clinical gold standard
for measuring stroke severity through various parameters [7].
NIHSS for quantifying motor weakness in acute stroke in-
volves qualitative monitoring of upper limb movements [2],
[6]. It is a 5-point scale that encodes the strength of an upper
limb against gravity, with 0 indicating normal strength and 4
indicating no movements or a completely dead arm, as detailed
in Table I.

TABLE I: NIHSS for upper limb weakness assessment
Score Description

0 Subject can lift up their arm, hold it steady against
gravity for 10 s, without any drift

1 Subject can lift up their arm, hold it against gravity
for 10 s, but there are drifts from the horizontal

2 Subject can lift up their arm, but cannot hold it
against gravity for 10 s, arm drops down

3 Subject cannot lift their arms up, but can shrug their
shoulders or twist their wrists

4 Subject cannot move any part of the arm in any way,
completely dead arm

B. Data Acquisition Protocol

The exercises to be done for NIHSS administration require
observing the duration and drift from the horizontal while arms
are held up against gravity (Table I). It consists of different
phases including elevation of the arm, holding it horizontally
for some time and putting the arm down to resting position.
Accelerometers capture changes in acceleration related to
any movement, and hence a wrist-worn device can easily
capture the drifts related to NIHSS exercise [6]. However,
the amplitude of this signal depends on the duration of each
phase, which can be measured only from the time-stamps of
onset and termination of each phase. Unless accurate time-
stamps of each phase are available, which requires precise
manual marking during data collection, such data from a
wrist-worn device cannot be used for developing a model
for automated hemiparesis scoring. This manual marking is
nearly impossible due to short duration of individual phases
such as elevation of arms or putting them down. Therefore,
in this paper, we attempt to correlate spontaneous movements
and some well-defined repetitive instructed movements with
the strength against gravity as indicated by NIHSS score.
We hypothesize that with increasing levels of hemiparesis,
these movements will dwindle in the affected arm, thereby
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increasing the difference (and lack of co-ordination) in the
movements of the two arms.

All upper limb movements in this study were selected based
upon advice from an expert neurologist. The movements were
selected such that they are not difficult to be performed by
acute stroke patients. An experimental protocol is designed to
capture such movements (illustrated in Fig. 1) as follows:

• NIHSS Scoring: Subject is asked to lift up and hold arms
horizontally for 10 s during which scoring for each arm is
done using the protocol described in Table I. This score is
used as the ground truth for the data acquired immediately
following this.

• Spontaneous movements or SM (3 mins): Subject is
encouraged to move their upper limbs as much as possible
in the vertical and horizontal directions and perform
simple tasks (e.g., lift a cup, move a pen and use a phone)
using both hands.

• Instructed movements or IM (10 s x 2 arms x 5 tasks per
arm): Subject is asked to perform five instructed tasks:
finger tapping, hand closing/opening, wrist torsion, elbow
flexion/extension and finger swiping. A hard surface is
provided for tapping and swiping. Each movement lasts
for around 10 s and is performed sequentially by the left
and right hands.

Rest

30 s 

Lift arms 
and hold

10 s

Rest

30 s

SM

~3 min

Rest

30 s 

IM with rest in 
between

~3 mins

Finger 
tapping

10 s x 2

Hand 
closing 

opening

10 s x 2

Wrist 
torsion

10 s x 2

Elbow 
flexion 

extension

10 s x 2

Finger 
swiping

10 s x 2

Ground Truth Acquisition Data Acquisition

Fig. 1: Flowchart showing data acquisition protocol

The objective behind this study is to investigate the suit-
ability of replacing manual (subjective) intervention in NIHSS
administration with a standardized (objective) and automated
assessment of hemiparesis in acute stroke using a minimal
number of wearable sensors, ensuring patient comfort. The
motor component (0-4 scales) comprises only a part of NIHSS
administration. Doctors are more interested in getting a broad
idea of improvement or deterioration of hemiparetic severity
(from mild-to-moderate to severe hemiparesis) indicated by
several NIHSS factors [19], [20]. In addition, the clinical
granularity is highly subjective and suffers from inter-rater
variability [10]. Moreover, wrist-worn accelerometers are lim-
ited in picking up minor differences in arm motion related to
all classes of motor NIHSS [6]. Additional sensors (and at
different locations) for longer duration may be able to pick
up more information [21]. But this is not applicable for acute
stroke patients in a hospital setting. Furthermore, from Table I,
it can be observed that, subjects in NIHSS 3 and 4 cannot
lift the arm and those in NIHSS 1 and 2 can lift the arm
but for different duration. Based on all these factors, in this
preliminary study, we have defined three fundamental levels
of hemiparetic severity, namely, severe, moderate and control.

Here, NIHSS 3 and 4 are grouped together to indicate severe
hemiparesis, NIHSS 1 and 2 are grouped together to indicate
moderate hemiparesis and score 0 indicates the control group
or healthy subjects.

C. Dataset Description

Data was collected from the stroke units at the Royal
Melbourne Hospital, Australia and Sree Chitra Tirunal Insti-
tute for Medical Sciences and Technology, India. The data
acquisition protocol was approved by the respective institute’s
human research ethics committee (RMH HREC 2016.146
and SCT/IEC/1081/October-2017). The screening criteria for
patient recruitment in this study was the presence of an upper
limb weakness due to an ischemic stroke within the past 5
days of data acquisition. The diagnosis of stroke was verified
clinically by an expert neurologist through neuroimaging [22].
Informed consent from the patient was ensured prior to data
acquisition. During the process of recruitment, 5 patients
refused to consent and 3 expressed unwillingness to continue
after beginning. Overall, data was acquired from 32 patients
(34% female, 67±13 years old) who had a stroke in the past
5±4 days resulting in a weak arm with moderate (NIHSS
1 or 2) or severe (NIHSS 3 or 4) hemiparesis. Above 80%
of the recruited patients were characterized by Total/Partial
Anterior Circulation Infarcts (TACI/PACI) [23] and a history
of hypertension. Additionally, 15 healthy participants (NIHSS
0) without any upper limb weakness were also recruited
as controls. Hence, a total of 47 subjects were recruited
for the study, as illustrated in Table II. For each level of
hemiparesis, the affected arm was assigned a score presented
in the column labeled NIHSS, whereas, the other arm was
labeled as normal, i.e., NIHSS 0. As observed from Table II,
the acquired data is highly unbalanced with NIHSS 2, 3 and
4 individually constituting only a small fraction of the entire
dataset. Hence grouping similar data into clinically acceptable
classes, as discussed before, could lead to the development of
an unbiased, well-fitted learning model for pattern recognition.

Data was collected using two low-cost wearable wrist-
worn sensors with triaxial accelerometers from Eoxys2. The
accelerometers acquired data at a sampling rate of 100 Hz
and with a full scale range of ±8g. The sensors communicate
via bluetooth to a smartphone application that records data
continuously and sends over to a remote server for storage.
The average data length across all subjects for SM and IM
were 3.28±0.72 mins and 3.32±1.33 mins respectively.

TABLE II: Details of acquired data

Motor
(Arms)
NIHSS

Characteristics
Number

of Subjects
Left

Affected Female Age
(years)

Total
NIHSS(/42)

0 15 N.A. 9 31.3±3.1 N.A.
1 16 5 6 67.8±13.6 10.1±7
2 5 4 1 73.4±13.5 5.8±3.9
3 6 4 2 65.6±8.6 12.5±2.4
4 5 3 2 62.6±16.4 15.6±3.1

2https://www.eoxys.com/
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III. MODEL FOR HEMIPARESIS IDENTIFICATION

Steps of data analysis for identifying the severity of hemi-
paresis are illustrated through the flowchart in Fig. 2. In
order to identify different levels of hemiparesis, the goal is
to find accelerometer features that can quantify the difference
in activity levels and co-ordination of movements between the
normal and affected arms.

Accelerometer Data

Preprocessing 

• Filtering

• Marker based

segmentation

Feature Extraction 

• TD-LCC

• TD-ACC

• FD-MSC

Evaluation of 

Feature Significance

• Statistical Tests

• ROC Analysis

Classification

• Hierarchical

Discriminant

Analysis

Severe 

Hemiparesis

Control

Moderate 

Hemiparesis

Fig. 2: Block diagram illustrating the proposed steps for
identifying hemiparesis from wrist-worn accelerometry

A. Preprocessing

Preprocessing involves removal of artifacts, segmentation of
the acquired raw signals and computing resultant acceleration.
In order to eliminate gravitational components of acceleration
as well as high frequency noise while retaining the move-
ment components of interest [13], data is filtered in 0.25-
10 Hz using a 6th order Butterworth bandpass filter. Data is
filtered in the forward and reverse directions to obtain zero-
phase filtering and avoid phase distortion. Further, a median
filter with window length of 3 samples is used to smooth
the accelerometer data followed by detrending to obtain a
zero-mean signal [13]. Each data session is segmented into
the spontaneous and instructed movement portions based on
markers noted during data acquisition. Suppose, accelerometer
data in X, Y and Z axes are represented by Ax

i (t), A
y
i (t) and

Az
i (t) respectively, where i ∈ [l, r] indicates left and right

arms, the resultant acceleration is computed as

Ai(t) =
√

(Ax
i (t))

2 + (Ay
i (t))

2 + (Az
i (t))

2 (1)

B. Feature Extraction

Traditional features for activity recognition from accelerom-
etry generally use statistical properties of the data in the
time and frequency domains to construct models for pattern
recognition [12], [13]. These features by themselves cannot
be used to quantify the relative motion of a body part with
respect to a reference. In this study, the focus is to quan-
tify the differences in the movements of the two arms for
identifying hemiparesis, i.e., we aim to analyze the deviation
of the movements in the hemiparetic arm with respect to the
normal arm (as reference) using accelerometry. Studying the
differences in movements across two arms leads to a subject-
independent relative approach to pattern recognition, compared
to analyzing the absolute motion of the weak arms for all
subjects. This section details the proposed measures of co-
ordination or coherence to quantify such differences using
accelerometry in time and frequency domains.

1) Time Domain Lagged Cross-Correlation (TD-LCC): The
lack of co-ordination (or correlation) among similar activities
of two arms over time is a major indicator of hemiparesis.
Healthy subjects (NIHSS 0) are expected to have higher corre-
lation, as both arms are equally equipped to perform any task.
However, with increasing hemiparesis (NIHSS 1 to NIHSS
4), correlation is expected to decrease, due to greater disparity
in the activity levels of the two arms, contributed by lesser
or no movement and more drifts and sways in the affected
arm. Because of lack of patient compliance in following
instructions, their language impairments and drowsiness due
to drugs in the hospital setting, the activities in two arms may
not be synchronized at any particular time lag. Hence we study
the cross-correlation [24] of accelerometer data from two arms
at all possible lags to identify patterns for different levels of
hemiparesis. For each segment (SM and IM), cross-correlation
Rlr at lag m for a length n data is measured by

Rlr(m) =

{∑n−m
t=1 Al(t+m)Ar(t), m ≥ 0

Rrl(−m), m < 0
(2)

The absolute value of Rlr across all lags is then filtered
below 0.1 Hz to produce a low pass envelope, which is
termed as the Lagged Cross-Correlation (LCC) signal. The
process is illustrated in Fig. 3(a). This envelope exhibits
interesting characteristics for each class of data as shown in
Fig. 3(b). It is observed that LCC changes from a peaked
signal with a higher value of maximum cross-correlation and
some prominent peaks to a more spread out signal with lower
values of cross-correlation throughout, for increasing levels of
hemiparesis, as expected according our hypothesis. Based on
these observations, the following characteristics of LCC that
indicate measures of cross-correlation and peakedness are used
as features:

• Statistical properties: Root Mean Squared (RMS)
value (LCCrms), maximum (LCCmax) and kurtosis
(LCCkurt)

• Total area under the LCC curve (LCCarea)
• Spread measured as the normalized length of the signal

beyond mean+sd (standard deviation) (LCCspread)
All features are computed for the resultant acceleration sepa-
rately for SM and IM leading to 5 features for each. LCCrms

encodes the overall mean squared correlation between the two
arms across all times lags, which is expected to decrease with
increasing levels of hemiparetic severity. We can easily see
from Fig. 3(b) that the maximum value of the correlation
is higher in the control subjects and gradually decreases for
moderate and severe stroke, thereby, making LCCmax an
important feature. It is also observed that with increasing
stroke severity, the peakedness of LCC curves decreases, that
is the curves become flatter throughout, with lesser correlation.
As kurtosis is a standard measure of peakedness, we use
LCCkurt to quantify is observation. Additionally, we propose
to use LCCspread which also measures peakedness in terms
of how many data points exceed the mean+sd for that curve,
i.e., a less peaked curve will have more number of points
exceeding this threshold indicating a more spread-out curve
across all lags. Additionally, the area under the LCC curve
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Fig. 3: Estimating TD-LCC features: (a) Creating LCC signals for (i) Left (Al) and (ii) Right (Ar) resultant acceleration, (iii)
acceleration signals at different lags (only three lags: -15s, 0s and 15s shown), (iv) absolute cross-correlation at all lags, (v)
estimated low pass envelope and (b) LCC signals for instructed movements with average of each class in bold: a peaked signal
with higher correlation in controls and spread out signals with overall low correlation for increasing hemiparesis

is found to decrease with hemiparesis because of overall low
correlations, therefore, we also use LCCarea as a feature.

2) Time Domain Activity Cross-Coherence (TD-ACC): The
activity levels between two arms are expected to be different
with the affected arm showing lower energy content [13].
Based on this hypothesis, the cross-coherence between dif-
ferent measures of activity among the two arms are used
to quantify hemiparesis through TD-ACC features. This in-
cludes segmenting data from each arm into active regions,
computing features that quantify the amount of activity in these
regions and formulating a metric to correlate activity between
two arms. Active regions are segmented based on adaptive
thresholds on 5s non-overlapping windowed values of three
parameters, namely, average amplitude (activity count) [16],
Shannon Entropy [25] and Zero Crossing Rate (ZCR) [26].
A window of data is determined to be active if either of
the parameters for that window exceeds the threshold. The
thresholds for each parameter are computed adaptively, from
the mean of the respective parameter over the data from
two arms for that session. A session showing the method of
segmentation along with the computation of TD-ACC features
is illustrated in Fig. 4.

The total duration (ACT i
t ), mean Shannon Entropy

(ACT i
se), mean ZCR (ACT i

zcr) and mean RMS (ACT i
rms)

across all active regions from the resultant acceleration of the
two arms (i ∈ [l, r]) are computed as measures of activity
for each arm. While entropy and ZCR encode the chaotic
nature and randomness of motion, the RMS value represents
the average nature of the signal. All of these are expected to be
of higher magnitude for normal subjects and show decreasing
trend for the increasing hemiparesis in the affected arm. For
severe hemiparesis, often the affected arm exhibits almost
no active regions, in which case, the activity measures are
assigned an arbitrarily low value (10−6). The coherence in
the activity levels between the two arms can be computed
as the ratio of these measures in the affected and normal
arms. However, as the ultimate objective is to build a model
to automatically score hemiparesis from unknown data where
which arm is affected might not be known, we use the ratio

of the lower value (assumed to represent affected arm) to the
larger value (assumed to represent normal arm) of the activity
measures as the coherence measure, leading to 4 features
ACT lr

j for j ∈ [t, se, zcr, rms], each for SM and IM.
𝐴
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Fig. 4: Estimating TD-ACC features: (a) Segmentation of ac-
tive regions followed by (b) Computing activity based features
from each segment

3) Frequency Domain Magnitude Squared Coherence (FD-
MSC): It is hypothesized that for different levels of hemipare-
sis, the cross-correlation between two arms will be different
at different frequency bands. This is because tasks that can
be accomplished easily by subjects of a particular level of
hemiparesis might be difficult to be accomplished by subjects
at another level of hemiparesis. For frequency domain analysis,
Power Spectral Density (PSD) is studied. As the correlation
between arms contain information on the degree of hemipare-
sis, the cross-PSD (CPSD) [24] between the two arms for
resultant acceleration is analyzed through Magnitude Squared
Coherence (MSC) estimation [27]. Suppose PSD of Ai(t) is
given by Pii(f) for i ∈ [l, r]. MSC is a function of individual
PSDs Pll(f) and Prr(f) and the CPSD Plr(f) between the
left and right arms computed as

MSClr(f) =
|Plr(f)|2

Pll(f)Prr(f)
(3)
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Fig. 5: Estimating FD-MSC features: (a) Creating the MSC estimate for (i) left (Al) and (ii) right (Ar) resultant acceleration
showing individual PSDs (iii) Pll(f) and (iv) Prr(f), (v) CPSD Plr(f) and (vi) computed MSC and (b) MSC estimates for
spontaneous movements (mean estimate for each class in bold) showing larger separation at lower frequencies

The MSC estimate is a function of frequency indicating
how well the left arm corresponds to the right arm at each
frequency, with values from 0 to 1. Because of the time varying
nature of accelerometer data, PSD is computed using a non-
parametric Welch Method [28]. The signal is split into over-
lapping segments followed by computation of periodograms of
the overlapping segments from their Fourier Transforms, and
averaging of the resulting periodograms to produce the PSD
estimate. Periodograms are computed using 128 point FFTs
with 50% overlap. The process is illustrated in Fig. 5(a) and
the MSC computed during spontaneous movements for each
class of data from 0 to 10 Hz is presented in Fig. 5(b). It is
clearly observed that, at lower frequencies the coherence is
higher among the left and the right arms and it decreases at
higher frequencies. To quantify this difference, the normalized
area under the MSC curve in 3 equally spaced frequency bands
0-3 Hz (MSC1), 3-6 Hz (MSC2) and 6-9 Hz (MSC3) are
considered as features and computed separately for SM and
IM. The band 9-10 Hz is ignored as all classes are observed
to have very low MSC here.

A list of all features that are separately computed for SM
and IM is presented in Table III, where mean(.), min(.),
max(.), sd(.), length(.) respectively denote the mean, min-
imum, maximum, standard deviation and length of the input
vector, lags denote the vector of all time lags used in comput-
ing Rlr and active regions denote the set of all time instants
t identified as active in Ai(t) by the segmentation method.

C. Hierarchical Discriminant Analysis

The set of proposed features can be used to build an
automated classification model for detection of hemiparetic
severity from accelerometer data. Instead of undertaking
only single-level multiclass classification to identify the three
classes of hemiparesis, two-level hierarchical classification
with binary classifiers based on discriminant analysis at each
level has been implemented as illustrated in Fig. 6, where
level 1 (L1) and level 2 (L2) respectively classifies controls
vs. hemiparetic stroke patients and moderate vs. severe hemi-
paresis. Compared to a single-level classifier, a multi-layer
hierarchical approach to classification offers more flexibility

in terms of selecting the most relevant features for each
component binary classification module, leading to better
performance [29]. In our classification problem, the separation
of controls, moderate and severe hemiparesis through this hier-
archical architecture is backed by similarity among the certain
classes on clinical grounds. As observed from Table I, stroke
survivors with NIHSS 3 and 4 both have the minimal amount
of arm movements and cannot lift their arms. Though NIHSS
3 exhibits occasional minor twitches in the arm, those are
difficult to be identified using wrist-worn accelerometers [6].
On the other hand, both NIHSS 1 and 2 can exhibit stronger
movements (and lift their arms) but the degree of co-ordination
and activity is lesser than that of controls. Hence we propose
to group the data and perform hierarchical classification by
selecting a set of most significant features for each level as
described in the subsequent subsection. This architecture is
also motivated by the skewed class distribution in our dataset
(Table II). It is hypothesized that, grouping similar data into
clinically acceptable classes can aid in the development of an
unbiased, well-fitted pattern recognition model by mitigating
problems associated with unbalanced class distributions [30].
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Fig. 6: Schemes of classification (a) Single-level multiclass
and (b) Two-level hierarchical for NIHSS scores 1 to 5

The classification model for discriminant analysis [31] as-
sumes multivariate normal distribution of the data X for each
class y, where the means and covariances of each class can
vary. The predicted class ŷ among K classes is obtained by

ŷ = argmin
y=1,...,K

K∑
k=1

P̂ (k|x)C(y|k) (4)
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TABLE III: List of Features

Set ID Feature Formulation

T
D

-L
C

C

1 LCCrms

√
mean(LCC2) for LCC computed ∀t ∈ [−max(lags),max(lags)]

2 LCCmax max(LCC) for LCC computed ∀t ∈ [−max(lags),max(lags)]

3 LCCspread length(LCCtk )/length(LCC), where LCCtk is computed for tk ⊂
t and LCC(tk) > mean(LCC) + sd(LCC) ∀t

4 LCCkurt E[(LCC(t)−mean(LCC))4]/E[(LCC(t)−mean(LCC)2]2 ∀t
5 LCCarea

∫max(lags)
−max(lags)

LCC(t)dt

T
D

-A
C

C

6 ACT lr
t =min(ACT l

t , ACT r
t )/max(ACT l

t , ACT r
t ) ACT i

t = length(t), t ∈ active regions, i ∈ [l, r]

7 ACT lr
se=min(ACT l

se, ACT r
se)/max(ACT l

se, ACT r
se) ACT i

se = mean(A2
i (t)log(A

2
i (t))), t ∈ active regions, i ∈ [l, r]

8 ACT lr
zcr=min(ACT l

zcr, ACT r
zcr)/max(ACT l

zcr, ACT r
zcr) ACT i

zcr = 1
AL

∑
t Z(Ai(t), Ai(t − 1)), AL = length(Ai)

Z(x, y) = 1 if xy < 0, i ∈ [l, r]

9 ACT lr
rms=min(ACT l

rms, ACT r
rms)/max(ACT l

rms, ACT r
rms) ACT i

rms =
√

mean(A2
i (t)), t ∈ active regions, i ∈ [l, r]

FD
-M

SC 10 MSC1

∫ 3
0 MSClr(f)df

11 MSC2

∫ 6
3 MSClr(f)df

12 MSC3

∫ 9
6 MSClr(f)df

where P̂ (k|x) is the posterior probability of class k for
observation x and C(y|k) is the cost of classifying an ob-
servation as y when its true class is k. Assuming same feature
covariance matrices of both classes, this produces a linear
decision boundary resulting in Linear Discriminant Analysis
(LDA). In contrast, allowing different feature covariance matri-
ces for different classes leads to a quadratic decision boundary
in Quadratic Discriminant Analysis (QDA). Combining the
hierarchical architecture with such binary classifiers at each
level, we describe these approaches as H-LDA and H-QDA.

Classification performance is evaluated by a leave-one-
subject-out method of cross-validation where the training
model is built using data from N − 1 subjects for testing on
the N th subject. Performance metrics, i.e., Accuracy (Acc),
Sensitivity (Sens), Specificity (Spec) and F-score are com-
puted for each class over all subjects [32]. This method of
validation ensures generalization and subject-independence.

D. Analysis of Feature Significance and Feature Selection

The significance of the proposed features is determined by
statistical tests and the Area Under the Receiver Operating
Characteristics (ROC) curve (AUC) [33]. For determining
the statistical significance of each feature, the non-parametric
Kruskal-Wallis test [34] is used and features with p < 0.05
are determined as statistically significant. However, Kruskal-
Wallis test marks those features as significant that can divide
the feature set into at least two different groups. In order to
measure the capability of each feature in differentiating control
from hemiparesis and moderate hemiparesis from severe, a
multiple comparison test is used for statistical significance in
each pair of classes. Non-parametric tests are used since the
number of data samples is relatively small.

To further analyse feature significance and select features
for building the hierarchical classification model, AUC is
calculated separately from the ROCs for binary classifications
at each level of the hierarchy, i.e., control vs. stroke cases in
L1 and moderate vs. severe hemiparesis in L2. ROC curves
highlight the goodness of each feature at different thresholds,
in maximizing the probability of detection and minimizing the

possibility of false alarms, thereby assisting in developing an
automatic classification model.

In order to build a classification model with the limited
sample size in our dataset, we only select the top 5 features
for each level to prevent overfitting [32]. These features are
selected from the pool of the statistically significant features
(p < 0.05) for that level, based on their rank determined by
the AUC value (high to low) for binary classification at that
level. Only those statistically significant features are consid-
ered for ranking which have AUC>0.8. All computations are
performed on MATLAB R2018a.

IV. RESULTS

A. Analysis of Feature Significance

The mean and standard deviation of each feature across
three classes are presented in Fig. 7(a) and Fig. 7(b), for
SM and IM respectively. In these figures, the features are
normalized in [0,1] by mapping the minimum and maximum
values to 0 and 1 respectively, for the ease of visibility only.
The statistical significance of each feature for the two levels of
hierarchy, determined by the p-value from the Kruskal Wallis
and multiple comparison tests is indicated by marking L1 or
L2 against each feature.

Fig. 7(a) indicates that, for SM, all TD-LCC features ex-
cept LCCspread can clearly discriminate between control and
hemiparetic patients, thereby being relevant for L1. A similar
characteristic is observed for FD-MSC features for SM as well,
though only MSC1 is found statistically significant for L1 in
the current dataset. For TD-ACC features the differences are
larger between moderate and severe hemiparesis. Hence these
features (except ACT lr

rms), are found to be significant for L2.
For IM, as observed from Fig. 7(b), it is found that TD-LCC
and FD-MSC features are again visibly different for controls
and hemiparetic subjects. However, out of these, only four
TD-LCC features are found to be statistically significant for
the same. TD-LCC features LCCrms, LCCmax and LCCarea

for IM are also significant in L2. All the TD-ACC features
for IM are particularly significant for separating moderate
and severe hemiparesis as observed from Fig. 7(b) as well
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-L
C
C2 𝐿𝐶𝐶𝑚𝑎𝑥

3 𝐿𝐶𝐶𝑠𝑝𝑟𝑒𝑎𝑑

4 𝐿𝐶𝐶𝑚𝑎𝑥

5 𝐿𝐶𝐶𝑎𝑟𝑒𝑎

6 𝐴𝐶𝐶𝑡
𝑙𝑟

TD
-A
C
C

7 𝐴𝐶𝐶𝑠𝑒
𝑙𝑟

8 𝐴𝐶𝐶𝑧𝑐𝑟
𝑙𝑟
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𝑙𝑟

10 𝑀𝑆𝐶1

FD
-M

SC

11 𝑀𝑆𝐶2

12 𝑀𝑆𝐶3

Fig. 7: Mean and standard deviation of features showing their statistical significance (p < 0.05) in L1 and L2 for (a) SM and
(b) IM and variation in AUCs in differentiating (c) controls vs. stroke i.e., L1 and (d) moderate vs. severe hemiparesis i.e., L2

as from the outcome of statistical tests. Additionally, most of
the features exhibit monotonic changes in the patterns of their
means from control to severe hemiparesis. For example, both
Fig. 7(a) and Fig. 7(b) show that TD-LCC features LCCrms,
LCCmax, LCCkurt and LCCarea, TD-ACC features ACT lr

t

and ACT lr
se and FD-MSC feature MSC1, decrease in their av-

erage values for increasing hemiparesis, whereas, LCCspread

increases monotonically for increasing hemiparesis for IM.

The variations in AUC for each feature are illustrated in
Fig. 7(c) and Fig. 7(d) respectively for L1 and L2, for both
SM and IM. For L1 classifications with spontaneous move-
ments, the maximum AUC (0.97) is observed for LCCmax,
closely followed by LCCrms (0.96) and LCCarea (0.95).
For instructed movements, the same features lead to the
highest AUCs (0.95 for LCCrms and LCCarea). Additionally,
both sets of movements show similar trends in differentiating
between controls and hemiparesis, with TD-LCC features
being the most relevant in terms of AUC values, as clearly
observed in Fig. 7(c). However, for each set of features,
spontaneous movements fare better for L1 classifications in
terms of AUC values. Upon close observation, it can be seen
that while almost all TD-LCC features produce high AUCs
(> a threshold of 0.8) for both SM and IM, the FD-MSC
features are particularly good for spontaneous movements
only, with only MSC1 exceeding the threshold. However,
a completely different trend is observed in Fig. 7(d) for the
AUCs in L2 classifications. In this case, the maximum AUC
(0.93) for spontaneous movements is achieved for ACT lr

t .
The same for instructed movements is observed for LCCmax
(0.95), closely followed by ACT lr

t (0.94), ACT lr
se (0.93),

LCCrms (0.92) and ACT lr
zcr (0.92). All TD-ACC features

lead to AUCs>0.9 for IM. For FD-MSC features, both SM
and IM lead to AUCs below 0.7 for L2 thereby indicating that
such features are not discriminative enough for L2. Therefore,
L2 classifications are characterized by higher AUCs for IM
across both TD-LCC and TD-ACC features, and a larger
variability and lower performance for both these feature sets

for SM. Hence, instructed movements are particularly useful,
especially with TD-ACC features for L2 classification, (as also
concluded from the feature distributions in Fig. 7(a) and 7(b)).
7 features across TD-LCC and TD-ACC have AUC>0.8 for
IM compared to only 4 features for SM.

TABLE IV: Overview of Significant Features (Mean±sd) with
AUCs in the Corresponding Levels of Hierarchy

ID Control Moderate
Hemiparesis

Severe
Hemiparesis AUC

SM

1 20.01±18.00 1.55±1.48 0.57±0.34 0.96 (L1)
2 74.51±72.02 4.26±4.85 1.45±0.86 0.97 (L1)
4 7.99±3.90 4.19±2.80 3.6±1.89 0.82 (L1)
5 14.33±11.94 1.32±1.16 0.47±0.28 0.95 (L1)
6 1.06±0.10 0.86±0.52 0.13±0.18 0.93 (L2)
8 1.07±0.18 0.98±0.34 0.35±0.47 0.82 (L2)

10 0.28±0.19 0.08±0.11 0.03±0.06 0.89 (L1)

IM

1 15.56±18.14 1.96±1.21 0.39±0.37 0.95 (L1),
0.92 (L2)

2 60.18±71.91 6.74±5.61 1.05±1.03 0.94 (L1),
0.95 (L2)

3 0.16±0.06 0.19±0.03 0.23±0.04 0.81 (L1)
5 9.69±9.35 1.48±0.94 0.32±0.30 0.95 (L1),

0.90 (L2)
6 1.00±0.26 0.84±0.37 0.17±0.29 0.94 (L2)
7 1.11±0.54 0.88±0.52 0.15±0.18 0.93 (L2)
8 1.06±0.13 1.07±0.33 0.35±0.42 0.92 (L2)
9 1.01±0.26 1.07±0.36 0.35±0.41 0.91 (L2)

B. Feature Selection

It is found that for spontaneous (and instructed) movements,
the requirements of statistical significance with AUC>0.8 are
met by 5 (and 4) features for L1 and 2 (and 7) features for L2.
The list of these significant features with the average values
across each class and AUCs for the level of significance in
the hierarchy is presented in Table IV. It clearly shows that
the average feature value has larger difference in controls
and any type of hemiparesis when selected for L1 whereas
the same is true for moderate and severe hemiparesis when
selected for L2. Additionally, all these significant features
show monotonic increase/decrease for increasing hemiparesis,
thereby exhibiting a pattern for classification of the data. The
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TABLE V: Classification Performance Metrics with Leave-One-Subject-Out Cross-Validation

Classifier Hierarchical Multi-class
Classes Acc Sens Spec F-score Classes Acc Sens Spec F-score

LDA
L1 Control 0.89 0.67 1 0.80 Control 0.85 0.60 0.96 0.73

Hemiparetic 0.89 1 0.67 0.93 Moderate 0.72 0.76 0.69 0.86
L2 Moderate 0.79 0.86 0.73 0.78

Severe 0.89 0.81 0.92 0.78 Severe 0.83 0.73 0.71 0.67

QDA
L1 Control 0.92 0.93 0.91 0.88 Control 0.89 0.80 0.83 0.93

Hemiparetic 0.92 0.91 0.93 0.94 Moderate 0.83 0.86 0.80 0.82
L2 Moderate 0.87 0.86 0.88 0.86

Severe 0.96 0.82 1 0.9 Severe 0.93 0.82 0.97 0.86

kNN
L1 Control 0.85 0.73 0.91 0.76 Control 0.87 0.80 0.91 0.80

Hemiparetic 0.85 0.91 0.73 0.89 Moderate 0.70 0.67 0.73 0.67
L2 Moderate 0.74 0.71 0.77 0.71

Severe 0.89 0.82 0.92 0.78 Severe 0.83 0.64 0.89 0.64

Decision
Tree

L1 Control 0.89 0.87 0.91 0.81 Control 0.83 0.73 0.87 0.73
Hemiparetic 0.89 0.91 0.87 0.92 Moderate 0.72 0.67 0.77 0.68

L2 Moderate 0.72 0.67 0.77 0.68
Severe 0.83 0.64 0.89 0.64 Severe 0.81 0.64 0.86 0.61

selected top features in each level ranked according to AUC
values, as discussed in Section III-D, comprise:

• L1: TD-LCC 1,2,5 (SM) & TD-LCC 1,5 (IM)
• L2: TD-ACC 6 (SM) & TD-LCC 1,2, TD-ACC 6,7 (IM)
Hence, the final set of features selected for L1 classification

comprise solely of TD-LCC features across both SM and
IM. For L2, TD-ACC features dominate across SM and IM,
however, IM based features are found to be more prevalent.
Overall, a set of TD-LCC and TD-ACC features, LCCrms,
LCCmax, LCCarea, ACT lr

t and ACT lr
se , are therefore popu-

lar in both the levels and across both types of movements.

C. Classification

The results of leave-one-subject out classification are illus-
trated in Table V. Here, the hierarchical approach is com-
pared with single-level multi-class approach and along with
LDA and QDA, some standard classifiers such as k-Nearest
Neighbours (kNN, with k=3) and Decision Trees (DT) [32]
are also studied. Multi-class classifications are implemented
with all statistically significant features (p < 0.05). QDA
shows the best performance across all the classifier models,
and H-QDA with feature selection leads to higher scores for
the metrics across all classes. In L1, controls and hemiparetic
subjects can be distinguished with a value of more than 0.9
for almost all metrics. The overall average Acc, Sens, Spec
and F-score across all classes are 91%, 87%, 93% and 88%
respectively after final classification in L2. For multi-class
QDA, overall average Acc, Sens, Spec and F-score across all
classes are 88.33%, 82.67%, 90% and 83.67% respectively.
In both cases, the metrics are higher in identifying controls
and severe hemiparesis than for moderate hemiparesis. The
performances are relatively poor for LDA, kNN and DT.
However, across all classifiers, the hierarchical models fare
better than the single-level multi-class models in terms of
average accuracy across all classes.

V. DISCUSSIONS

Clinical research shows evidence of worsening of motor
weakness in upper limbs due to hemiparesis in acute stroke [2],
[3]. Though wearable motion sensors have proved to be

suitable to capture motor functionalities for identifying hemi-
paresis [6], [15], there is lack of research on the quantification
of the process and the development of an automatic scoring
system for the same using short-length data from a minimal
number of sensors. The results of this work indicate that a
combination of the proposed set of spontaneous and instructed
movements quantified by time and frequency domain measures
of upper limb co-ordination using wearable accelerometry can
be used for this purpose. Further, the proposed measures can be
used to score hemiparesis using a subject-independent pattern
recognition model with reference to clinical NIHSS scores.

From the statistical analysis of features, it is observed that
control subjects can be easily separated from stroke patients
with hemiparesis, which is clinically very evident. This is
supported by the higher value of AUCs across all features for
L1 in Fig. 7(c) compared to L2 in Fig. 7(d). For the separation
of moderate and severe hemiparesis, instructed movements and
TD-ACC features are found to be more significant. This can
be attributed to the fact that spontaneous movements for both
moderate and severe hemiparesis are very low, but patients
with moderate hemiparesis can make attempts to perform the
instructed movements. Hence, the measures of coherence in
activity show larger difference for instructed movements in
moderate and severe hemiparesis. All features found to be
significant (Table IV), decrease in their average values for
increasing hemiparesis, except feature ID 3, LCCspread for
IM. This is justified by the fact that the features other than
LCCspread quantify the level of activity and co-ordination
which is expected to be lower in severe hemiparesis. Whereas,
LCCspread is a measure of lack of co-ordination throughout
the signal and is expected to be higher for severe hemiparesis.
The features finally selected for classification, described in
Section IV-B also bear clinical significance. It is found that
TD-LCC features dominate for both SM and IM in L1, for
discriminating control from hemiparesis. This can be explained
from the fact that control subjects should have high overall
correlation between the two arms as the same activities are
attempted to be performed by both hands [4]. However, for
hemiparetic patients, there is lack of co-ordination between
two arms leading to a very different pattern in the LCC signal.
Features selected for L2, for discriminating moderate and
severe hemiparesis are dominated by instructed movements.
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This is because the spontaneous movements for stroke patients
(whether moderate or severe hemiparetic) tend to be limited.
In this case, other than TD-LCC features, TD-ACC features
also prove to be vital, supported by the fact that the degree
and duration of activities differentiate hemiparetic severity.

As a comparison of these features with the measures of
hemiparesis for acute stroke from accelerometry data proposed
in earlier works, we performed statistical analysis on the
three activity based metrics proposed in [6] and the three
axes correlation based metrics in [14] for both spontaneous
and instructed movements acquired with our experimental
protocol. It is found that the SMA and energy based metrics
proposed in [6] have p < 0.05, but they are found to be
significant only for classification of controls vs. hemiparesis,
and control and moderate hemiparesis vs. severe hemiparesis
respectively, thereby being unsuitable for scoring hemiparesis
from short length accelerometer data.

Prior to classification, we employ clustering to group
the feature space into meaningful clusters [35] in order to
analyse the suitability of the proposed classification method
based on data characteristics. We use simple visual analysis
of hierarchical agglomerative clustering for recognizing the
similarity among classes and assessing the formation of a
hierarchical classifier on this dataset [36]. This form of hier-
archical clustering starts with each data point as an individual
cluster, and these clusters are sequentially combined into
bigger clusters. Two clusters closest in the sense of a well
defined set distance are joined at each step in this process. We
use single linkage with Euclidean distance between feature
vectors, and the distance between two clusters is defined as
the distance between the pair of data points (one in each
cluster), that are closest to each other [35]. The results can
be visualized using a dendrogram, which shows the sequence
of cluster fusion and the set distance at which each fusion
took place, thereby illustrating the hierarchical process. Fig.
8(a) illustrates this process using the average of the significant
features obtained for each NIHSS level. Logarithm scale is
used for the linkage distance only for the ease for visibility.
The dendrogram clearly indicates a hierarchical structure in the
data with controls completely separated out and NIHSS {1,2}
and NIHSS {3,4} grouped together. Further, it can be seen that
NIHSS 3 and 4 have lesser distance among them compared
to NIHSS 1 and 2. Based on these observations, we also
investigate the scatter plots of the significant features across all
classes, one of which is presented in Fig. 8(b). The features
are also representative of the fact that there is an inherent
hierarchy in the dataset, with the control and hemiparetic
groups separated by a larger distance than the moderate and
severe hemiparetic groups, while there is significant overlap
between NIHSS 1 and 2 and also NIHSS 3 and 4.

It is observed from Table V, that the hierarchical approach
with the most relevant features selected at each level results in
better performance metrics for each class for all classification
methods. The performance metrics are higher for the first level
showing better separability between control and hemiparetic
subjects. The relatively lower performance in identifying mod-
erate hemiparesis as observed from the performance metrics
can be attributed to the fact that it has overlap in feature spaces
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Fig. 8: Analysis of hierarchical structure in the dataset (a)
Dendrogram from Single Linkage clustering on significant
features shows similar grouping as hypothesized in Fig. 6(b)
and (b) Scatter plots using two of the selected features also
highlights similarities among hemiparetic data, with overlap
in NIHSS {1,2} and NIHSS {3,4}
partly with controls and partly with severe hemiparesis. The
hierarchical architecture captures the wider difference between
controls and hemiparetic subjects (Table IV) and propagates
a small error from the first level to the next leading to an
overall smaller error than the single-level multi-class case. H-
QDA leads to best performance and additionally, there is a
balance between Sens and Spec resulting in high F-scores
and implying an unbiased classifier for each of the classes.
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Fig. 9: Classification decision boundaries with H-QDA using
two of the selected top features in (a) L1 and (b) L2

Visual representation of the decision boundaries obtained
by the H-QDA model on the entire dataset for two of the
selected features in each level of the hierarchy is shown in
Fig. 9. The figures indicate that the features are non-linearly
separable. This justifies the better performance of QDA instead
of a linear classification model (such as LDA), such that the
non-linear decision boundaries at each level of the proposed
model can successfully differentiate between pairs of classes
with minor miss-classifications. Additionally, among popular
pattern classification methods, discriminant analysis (LDA or
QDA) leads to more stable classifiers for small sample size
and overlapping classes, as in this study [37]. The relatively
poor performance of kNN and DT can be attributed to the
small sample size, as both these classifiers inherently perform
better with increasing training data. Also these classifiers are
highly affected by the choice of parameters, (i.e., k for kNN,
number of leaves, information gain metric etc. for DT), which
need tuning after analysis on bigger datasets [32].

VI. CONCLUSION

In this paper, a novel experimental paradigm is proposed
for identifying different levels of hemiparetic severity in acute
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stroke using short length wrist-worn accelerometer data com-
prising upper limb movements made during spontaneous and
instructed activities. Time and frequency domain coherence
analysis of accelerometer data has been used to estimate novel
measures of co-ordination between two arms. While such
measures of co-ordination during spontaneous movements can
differentiate between controls and hemiparetic subjects, more
features based on instructed movements are found significant
to identify differences in moderate and severe hemiparesis.
Further, a classification model is also developed based on
discriminant analysis that can identify controls and the two
levels of hemiparesis for automatic scoring in a hierarchical
fashion. Future studies in this direction include the use of
multiple sensors and different modalities to accurately identify
hemiparetic severity with respect to each level in the clinical
gold standard. Analyzing continuously recorded spontaneous
data to identify improvement or deterioration in the condition
of acute stroke patients, without any instruction, is another
challenging future implication of this study.
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