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Abstract—Industry 5.0 integrates advanced technologies like
Automated Guided Vehicles (AGVs) and Augmented/Virtual
Reality (AR/VR) with human expertise, requiring ultra-reliable
communication for safe and efficient manufacturing. Network
resource allocation in this context is challenging, demanding
efficient support for diverse applications while meeting stringent
performance targets, including 99.9999% availability. This study
presents a novel application-aware resource allocation scheme
for an Industry 5.0 system connected to a 5G network. Our
approach dynamically adapts to industrial application states,
bridging network optimization and real-time factory operations.
The solution comprises (1) a learning-based framework for safety
and productivity-conscious allocation policies, (2) a heuristic real-
time resource allocation policy addressing the computational
scalability problem of learning-based methods, and (3) statis-
tical analysis for bandwidth requirement estimation. Simulation
results show our method achieves 99.9999% availability while
reducing bandwidth usage by nearly 50% compared to tra-
ditional methods. This work contributes to more efficient and
scalable Industry 5.0 systems, potentially doubling the number
of supported industrial components within the same network
infrastructure.

Index Terms—Industry 5.0, Augmented Reality, Virtual Real-
ity, Maintenance 5.0, Network Resource Allocation

I. INTRODUCTION

The 5G wireless network advancement presents a fast,
reliable, and secure communication system. Integration of 5G
network in the Industry 5.0 system can revolutionize the smart
manufacturing processes regarding productivity, flexibility, and
scalability [1]. A fast communication system supported by a
5G network makes it possible to offload the computationally
expensive industry control functions from the factory floor to
an edge server. Moving controllers from the factory floor to
the edge server reduces hardware costs on the floor, increases
flexibility and mobility of production processes, and allows
efficient allocation of storage capacity and computational
power according to the needs on the factory floor [2], [3],
[4]. Another unique feature of the Industry 5.0 system is
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the capability of remote maintenance support, which does
not require physical human presence on the factory floor, but
rather s separate place near or within the factory premises
[5]. This human-centric approach, where collaboration among
human workers, industry robots, accompanying software, and
emerging technologies such as Internet-of-Things (IoT), cloud
computing, Augmented Reality (AR) and Virtual Reality (VR)
are needed for maintenance in an Industry 5.0 setting is re-
ferred to as Maintenance 5.0 [5]. Integration of the 5G network
in the Industry 5.0 system provides fast communication that
allows industry workers and technicians remote access to the
factory floor [1]. The reliable communication offered by the
5G network, along with a suitable resource allocation policy,
is equivalent to allowing human workers to seamlessly interact
with machines on the factory floor and the proper functioning
of various industrial applications.

Industry 5.0 applications have two crucial requirements:
satisfy availability and increase scalability. The performance
metric Availability is defined as the percent of the time that the
end-to-end communication service is delivered on the factory
floor. The 3GPP Study on Communication for Automation
has set the availability target to be greater than 99.9999%
(commonly termed six-nines availability) [1]. This availability
directly affects industrial applications. For example, delay in
video transmission can lead to poor motion control decisions
and possible collisions on the factory floor, and delays in
haptic controls can disrupt remote human access to the factory
floor, risking faulty decisions by human workers. Therefore, it
is necessary to implement local area networks within factory
premises and provide a private 5G network uninterrupted
by external factors [1] to meet the performance goals of
an industrial automation process. A proper network resource
allocation policy is critical to ensure the optimal use of avail-
able network resources to avoid wastage and guarantee high
performance. Industry 5.0 environments are highly dynamic
and heterogeneous. Designing an allocation policy capable
of sustaining the Quality-of-Service (QoS) requirements with
a very high degree of availability is very important for the
successful operation of an Industry 5.0 system. Although some
of the existing works [6], [7], [8], [9], [10], [11] in the
literature discuss network resource allocation problem in the
Industry 5.0 system, none of them show if those policies can
ensure 99.9999% availability. Our work shows that some of
these policies fail to achieve this requirement.

The scalability of an Industry 5.0 system is essential for
effectively handling fluctuations in customer demand [1],
[12]. A scalable industrial system possesses the capability to
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adjust production capacity effortlessly through the addition or
removal of manufacturing resources. The scalability require-
ments of the Industry 5.0 system arise from the need to accom-
modate more industrial components to the 5G network and the
computational complexity of allocating network resources to
different industrial components. So, we have to successfully
meet the performance requirements while using fewer network
resources to improve the scalability of an industrial process
and make the resource allocation method computationally
efficient. In conventional communication systems, data injec-
tion sources into the wireless network lack regulation and
operate independently of the network allocation process. In an
industrial system where the performance target is stringent, the
resource allocator should be aware of the state of the industrial
applications and allocate resources according to the needs
of various industrial applications. In this work, we design a
computationally efficient application-aware resource allocator
that improves the usage efficiency of network resources, thus
allowing more industrial components to be added to the
wireless system. In the following subsections, we shall discuss
some of the relevant works and finally discuss the novelties
of our work.

A. Related works

In recent literature, the challenges associated with remote
human interaction via AR-VR in Industry 5.0 systems have
been explored - (a) safety and comfortability of the remote
human workers [13], [14], (b) providing an immersive expe-
rience to human workers aiming to enhance the productivity
of the industrial applications [15], [16]. Integration of 5G has
led to extensive studies on moving industrial controller appli-
cations to the edge server, such as - designing architectures
for edge-based computing for AR-VR applications [17], [18]
and deploying motion controllers for the Automated Guided
Vehicles (AGVs) on the edge server [19]. These objectives
are intricately related to the availability of sufficient network
resources and a corresponding allocation policy, which are
not discussed in those works. Our work aims to bridge
that gap in the literature. Some network resource allocation
policies for Industry 5.0 system are available in literature
[8], [6], [7], [9], [10], [11]. None of these works consider
the randomness associated with remote human intervention
on the factory floor. These resource allocation policies do not
consider the state of the industrial application while allocating
bandwidth to different components. Our resource allocation
method can achieve 99.9999% availability using nearly 50%
fewer resources compared to these existing policies.

Very few works in literature have connected the network
resource allocation problem with the varying demands of the
industrial applications [20], [21]. In [20], the authors propose a
learning-based channel selection framework aware of the data
backlog, energy capacity, and transmission reliability of the
industrial components connected to the wireless network. This
resource allocation method does not consider the cycle times
of the industrial applications and does not ensure 99.9999%
availability. The authors of [21] design a dynamic network
management framework that can tackle the varying constraints

on the round-trip delays corresponding to different industrial
applications. None of these works shows how these resource
allocation methods can achieve the 99.9999% availability
target required by Industry 5.0 systems. In our work, we
develop a resource allocation method aware of the states of the
industrial applications and can achieve 99.9999% availability.
Most existing works on the scalability of industrial systems
aim to design mathematical models for increasing industrial
capacity to meet the market demand [22], [23]. In [24], the
authors proposed a novel access protocol for low-power wide
area networks that can accommodate more IoT nodes under a
single base-station and showed its suitability in an industrial
setting. The effect of increased scalability on the availability
of the industrial systems was not considered in [24]. Our work
explores the mutual effects between scalability and availability,
which is missing in the existing works.

B. Contributions

In our previous work [25], we analyzed an Industry 4.0
system with a VR-enabled maintenance training system. Our
current work on an Industrial 5.0 system with AR-VR-based
remote access capability has some key differences in compar-
ison to [25] as listed below:
(a) Scenario: In [25], VR 360◦ video is sent from the

factory floor to the remote maintenance training room
throughout the industrial operation. Meanwhile, in current
work, remote access events may happen at any point in
time to change industry parameters to provide customized
services or maintenance purposes. So, the video feed must
be sent only during the access events.

(b) Human-machine interactions: In [25], no real-time
maintenance action events are considered during the
lifetime of the industrial system. So, human-machine
interaction is absent in that scenario. However, in this
work, the human workers intervene in real-time according
to the needs of the factory floor. So, the network resource
allocation policy must consider whether or not a remote
access event is happening on the factory floor.

(c) Solution framework: In [25], we have formulated an
optimization-based framework for designing resource
allocation policy. However, in this work, the inher-
ent spatio-temporal randomness associated with the re-
mote access events makes it impossible to design an
optimization-based resource allocation scheme. So, we
intend to focus on learning-based methods convenient for
dynamic systems.

(d) Selective allocation to industrial components: In [25],
we allocate resources to all the cameras to create VR 360◦

view of the whole factory floor throughout the Industrial
process. However, in this work, we selectively choose the
cameras and AGVs for resource allocation based on the
requirements on the factory floor.

This work considers two crucial industrial applications of
an Industry 5.0 system: (1) motion control of the AGVs
and (2) remote human access on the factory floor. In the
motion controller application, AGVs interact with the motion
controller on the edge server, which is a machine-to-machine
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interaction. In contrast, remote human access via the AR-
VR system is a human-machine interaction involving remote
industrial workers and mobile robots on the factory floor.
We can influence the motion controller by managing video
input and selectively sending motion decisions to AGVs while
ensuring safety on the factory floor. However, haptic control
decisions are made by human workers based on information
received from the mobile robot operating on the factory
floor. So, for remote human access events, human-to-machine
interaction occurs, and we do not have a direct or indirect
way of controlling the interaction without potentially affecting
remote access by industrial workers. We design a network
resource allocation method that looks into the requirements
of these industrial applications.

The main contributions in this work are as follows:
• Application-aware resource allocation: We connect the

network resource allocation problem with the perfor-
mance of industrial applications on the floor. This novel
approach to making the allocation process application-
aware increases the efficiency of resource usage by nearly
50% compared to existing works [8], [6], [7] and im-
proves the scalability of the factory by accommodating
more components to the wireless communication system.

• Statistical method for resource estimation: We propose
a statistical approach to find the lower and upper bounds
of the resource requirement for 99.9999% availability for
motion control and remote access applications, which is
new in Industry 5.0 settings.

• Computationally efficient heuristic policy: We design
an application-aware heuristic resource allocation policy
with quadratic time complexity concerning the number
of AGVs and linear time complexity in the number of
cameras. It resolves the scalability issue of learning-
based methods by reducing the search space for possible
resource allocation decisions.

• Benchmark against Learning-based policy: The ran-
domness associated with remote human interaction with
machines on the factory floor, as well as the variability
of the channel conditions inside the factory, means that
the best possible sequence of resource allocations over
time that can achieve the safety and delay requirements,
cannot be obtained by traditional optimization problems.
We use several learning-based methods to benchmark our
real-time policy and highlight the computational benefit
of the heuristic method.

II. SYSTEM MODEL

Consider a fully automated factory floor with AR-VR-
assisted remote human access to the factory floor, shown in
Fig. 1. There are M AGVs moving between their respective
source and destination on predefined paths, each having a
maximum achievable velocity of vmax. C number of cameras
are mounted on the walls of the factory floor at strategic
locations for monitoring the factory floor. Each camera has
a radius of observation beyond which it cannot monitor the
floor. It is assumed that every part of the factory floor is
observable with at least one camera. AGVs must maintain

a minimum distance to prevent collision events, called the
collision avoidance radius and denoted by ra. AGVs have
sensors onboard to avoid imminent collisions. As shown in
Fig. 1, human workers can access the factory from the remote
workers’ room via VR headsets that support telepresence. A
remote access event can happen for various reasons such as -
maintenance purposes, tuning industry parameters etc. During
a remote access event, the industry worker communicates
with the mobile robot on the factory floor via various haptic
sensors. The mobile robot has an object detector, impedance
rendering capability, and a camera that can stream video from
the factory floor to the remote workers’ room [26]. Motion
control of the AGVs and the mobile robot is performed by
a motion controller, based on the video feed obtained from
the monitoring cameras. The motion controller is placed on
an edge server.

Fig. 1: An Industry 5.0 system with AR-VR-assisted access system
for industrial workers at the remote room.

A 5G base station is placed on the industry premises to
provide a private and uninterrupted communication system on
the factory floor [1]. This work uses the 5G New Radio (NR)
access technology for wireless communication on the factory
floor. According to 3GPP TS 38.101-1 V18.3.0, a Resource
Block (RB) is a block of 12 consecutive subcarriers in the
frequency domain. The total number of RBs available to the
industrial system is denoted by NRB, which is bounded by the
physical structure of 5G NR. The 5G base station allocates
RBs to the industrial system components at a time interval of
TS . In the following sections, we develop a statistical method
for estimating resource requirements, define the key parame-
ters that describe the industrial system mentioned above, and
design methods to find a suitable network resource allocation
policy that can satisfy the end-to-end delay requirements of
the motion control application and the remote access events.
The performance of the Industry 5.0 operation is characterised
by the cycle times of the involved applications and the overall
availability of the system.

A. Cycle Time

The cycle time of a particular industrial application consists
of the time to generate a control sequence from the controller
affecting that specific application, transmission delay over the
wireless network, and the time to receive confirmation that the
control command has been implemented [1]. According to the
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3GPP Study on Communication for Automation in Vertical
Domains (TR 22.804), the end-to-end delay or cycle times of
Industry 5.0 applications must be supported by the wireless
communication system on the factory floor 99.9999% of time
[1]. The cycle times of the AR-VR based remote access and
motion control applications are denoted by ∆ARVR and ∆Motion,
respectively.

The cycle time for the AR-VR assisted remote access
events includes the communication delay between the remote
workers’ room and the mobile robot, the control delay incurred
by human perception, and the delay in implementing haptic
controls at the mobile robot. The average delay of human
actions and the average delay in implementing haptic controls
are represented by δPerc and δHaptic. As a result, the maximum
allowable transmission delay for the remote human access
application can be denoted as ∆1 = ∆ARVR−δPerc−δHaptic. For
the motion control application, the end-to-end delay consists
of the maximum uplink delay for transmitting camera video
feed to the edge server, the processing delay to decide the
motion controls, the downlink transmission delay to send
the controls to the AGVs, and the delay to implement these
controls. The average processing delay and the average delay
in implementing the motion controls are denoted by δProc and
δMotion, respectively. So, the maximum allowable transmission
delay (denoted by ∆2) for the motion control application is
given by ∆2 = ∆Motion − δProc − δMotion.

B. Availability of Industrial Applications

Availability in the context of ‘communication service avail-
ability’ indicates that a system is deemed available only when
it meets all the QoS criteria, including latency, data rate, etc.
As such, it is usually measured by the proportion of time
in which a system functions correctly. Industry environments
demand extremely high availability to ensure uninterrupted
production processes. This work considers two industrial ap-
plications whose availability is calculated as follows.

• Motion control application: Availability of the motion
control application depends on the safety on the factory
floor. In the simulation process, availability (99.9999%)
corresponding to the motion control of the AGVs is
calculated by the percentage of time duration of the
industrial process in which no possible collision event
occurs. By achieving this high level of availability, we
lower the chance of end-to-end delay violation for the
application to nearly zero, ensuring the desired control
performance [1].

• Remote access application: Availability of the remote
access events is defined as the percentage of time cycle
time constraint if the application is not violated.

Clearly, to maintain a high degree of availability, we have
to satisfy the cycle times of different industrial applications.
In the following section, we develop a real-time network
resource allocation policy aiming to meet the performance
requirements of the industrial system. Based on this policy, we
also show how we can estimate the resource requirement of the
Industry 5.0 system. To the best of our knowledge, this work
represents the first attempt to quantify availability specifically

for motion control and remote access applications in industrial
settings. By proposing these measurement methods, we aim to
provide a more precise and application-specific understanding
of availability in Industry 4.0 contexts.

III. REAL-TIME NETWORK RESOURCE ALLOCATION

In this section, we develop a real-time network resource
allocation policy aiming to satisfy the cycle time constraints
of the motion control and remote access applications. By
prioritizing cycle time constraints and ensuring timely delivery
of critical control signals, our method maintains performance
as system complexity grows, making it particularly well-suited
for dynamic, safety-critical industrial environments where
predictable, explainable outcomes are crucial. Later in this
section, we design a statistical method, heavily relying on the
allocation policy, to estimate the resource requirement of the
Industry 5.0 system.

A. Approximate Delay Functions

To quantify the cycle times defined in Section II-A, we need
to approximate the various delay components. We approximate
transmission delay curves using the Shannon-Hartley theorem
to design a heuristic application-aware network resource al-
location method. In our earlier work [25], we have shown
that these approximated wireless transmission delays work
well in an industry setting with access to the private 5G
network. The parameters needed to calculate the approximate
delay functions are given in Table I. We can approximate

δRem
(
zt; g

Rem
t

)
as sRem

/[
12∆fzt log2

(
1 +

P1g
Rem
t r−α

Rem
12∆fztN0

)]
.

Expressions of the other approximate delay curves can be
written similarly. For the tth round of RB allocation, the set of
camera indices from which the video feed is sent to the edge
server is denoted by St

CAM and the set of indices of the AGVs
to which motion controls are sent is denoted by St

AGV. The
uplink transmission delay from the camera system to the 5G
base station is given by δUp,t

CAM = maxk∈St
CAM

δk,tCAM

(
xkt ;h

k
t

)
.

Similarly, the downlink transmission delay to send motion
controls from the 5G base station to selected AGVs can be
represented as δDown,t

AGV = maxi∈St
AGV

δi,tAGV

(
yit; g

i
t

)
. The follow-

ing proposition is crucial for designing heuristic methods for
network resource allocation.

Proposition 1. Let x1, . . . , xn be n positive real numbers
such that x1 + . . . + xn ≤ N . Consider n continuous and
differentiable decreasing functions fi(xi) ∀ i ∈ [1, n]. If the
minimum value of maxni=1 fi(xi) is v at (x′1, . . . , x

′
n), then

x′1 + . . .+ x′n = N and f1(x′1) = . . . = fn(x
′
n) = v.

The proof of the proposition is given in our earlier work
[25].

B. Heuristic Methods for the Selection of Cameras and AGVs

In contrast to our previous work [25], we do not allocate
RBs to all AGVs and cameras in every round of RB allocation.
We allocate RBs to those AGVs, the motions of which must
be controlled appropriately to prevent possible collisions in
the near future. We also need to allocate RBs to the cameras
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with those critical AGVs in their line of sight so that video
feed from those cameras can be sent to the edge server and
correct motion control decisions can be made.

• Selecting AGVs: The AGVs on a collision course with
obstacles are chosen. The distance-based selection of the
AGVs reduces the chances of a collision.

• Selecting cameras: The set of cameras covering the
motion of selected AGVs are chosen, which translates
to set cover problem, which is an NP-hard problem with
no polynomial time algorithm [27].

C. Real-time Algorithm for Resource Allocation and its Com-
putational Complexity

At each allocation round, we divide the available RBs
between the two applications, motion control and AR-VR-
assisted remote access. The fraction of RBs allocated for
remote access is denoted by ψ. In Algorithm 1, we use the
binary search method to tune the value of ψ to satisfy the
cycle time constraints of both applications. If enough network
resources are unavailable to the industrial system, satisfying
one or both delay constraints will be impossible. We use
Subroutine 1 to allocate network resources for the remote
access application and Subroutine 2 to allocate RBs to the
AGVs and cameras.

Algorithm 1: Policy for tth round of RB allocation

1 Calculate maximum allowable transmission delays for
Remote access and Motion control applications (see
Section II-A).

2 if No remote access event is going on then
3 Use Subroutine 2 and stop Algorithm 1.
4 The sets of selected cameras and AGVs (see Section

III-B) are St
CAM and St

AGV.
5 Allocating chunks of RBs to different applications:

• Fraction of RBs allocated to the remote access
application = ψ (0 < ψ < 1). Initialize ψ to 0.5.

• RBs allocated to remote access = NRem = ⌈ψNRB⌉
• Rest (NMotion) are allocated for motion control
RBPrevious and RBCurrent are empty resource allocation

vectors.
6 do
7 Copy RBCurrent to RBPrevious.
8 Use Subroutine 1 and Subroutine 2 with RB

constraints NRem and NMotion respectively.
9 Store the resource allocations found by Subroutine

1 and Subroutine 2 in RBCurrent.
10 If both allocations are invalid, not enough RBs are

available. Break the while loop.
11 If one allocation is valid, adjust ψ using Binary

Search to make room for the other allocation.
12 while RBPrevious and RBCurrent are not equal;
13 Return the final RB allocation.

(I) Subroutine 1: We allocate a fixed amount of RBs to the
remote workers’ room and the rest to the mobile robot.
We iterate the process until an allocation is found that

satisfies constraints on RBs and end-to-end delay. The
time complexity of Subroutine 1 is O(NRB).

(II) Subroutine 2: We allocate a fixed number of RBs for
communication from cameras to the base station and the
rest to the AGVs to receive motion controls from the
base station. We invoke Subroutine 3 (described in the
following point) to find RB allocation to achieve the
minimum uplink and downlink transmission delays.

(III) Subroutine 3: From Proposition 1, minimum transmission
delays can be achieved if the individual component (see
Section III-A) dictating uplink delay (similarly for the
downlink) has the same value. All transmission de-
lays have the form a1/(x log(1 + a2

x )) = ∆t, where
x corresponds to the number of RBs for a particular
transmission. The solution to this equation is given
by x = − a1a2

a1 + a2∆tProductLog
(
−a1 exp(−a1/(a2∆t))

a2∆t

) ,

where the ProductLog(z) function, also known as the
Lambert W function, gives the solution for wew = z. We
fix a target transmission delay (both uplink and downlink)
in the range (ϵ,∆2) and try to find a corresponding RB
allocation based on Proposition 1. ϵ is a very small pos-
itive real number and ∆2 is defined in Section II-A. We
use binary search to pinpoint the value of the uplink and
downlink transmission delays that allow RB allocation
without violating the RB constraint. The time complexity
of III-C(III) is O(C +M). So, the total time complexity
of III-C(II) is O(NRB · (C +M)).

Now, we evaluate the time complexity of our real-time
allocation RB allocation policy (Algorithm 1). The time com-
plexity for selecting the cameras and AGVs depends on the
particular heuristic method (see Section III-B). The distance-
based selection of AGVs and greedy algorithm for set cover-
based selection of cameras have time complexity O(M2) and
O(CM). Therefore, the overall complexity becomes O(M2+
CM +NRB · (C+M)), which makes it computationally more
scalable than RL-based policies.

As the individual resource allocation takes positive integer
values and the total available resources is finite, the space of
all possible resource allocations is finite. We prove the conver-
gence of our heuristic algorithm by showing the convergence
of Subroutines 3, 2, 1 and Algorithm 1 in the following points.

1) Convergence of Subroutine 3: The search intervals of the
binary search to find the minimum uplink and down-
link transmission delays using available resources, are
bounded and closed. In each iteration, the intervals are
halved. As the number of resource blocks allocated to
each component are positive integer, the space of valid
resource allocation is finite. So, the halving process of the
binary search will find the minimum transmission times
using available network resources in O(logNRB) steps.

2) Convergence of Subroutine 2: Subroutine 2 invokes Sub-
routine 1 O(NMotion) times [NMotion is defined in Algo-
rithm 1], and find a resource allocation using available
resources to minimize cycle time of motion control ap-
plication.

3) Convergence of Subroutine 1: Subroutine 1 runs for
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O(NMain) steps [NMain is defined in Algorithm 1], and
find a resource allocation scheme that satisfies the cycle
time constraint of the remote access event. If enough
resource is not available, Algorithm 1 is used to adjust
NMain.

4) Convergence of Algorithm 1: In Algorithm 1, we par-
tition the total resources between motion control and
remote access applications. The search interval [0, NRB]
is bounded and closed. At each step of Algorithm 1, we
adjust the partition, use Subroutine 1 to satisfy the cycle
time constraint of remote access event and Subroutine 2
to minimise the cycle time of motion control application.
Due to the finite search space of resource allocation, at
each iteration, we keep halving the interval in which the
optimal partition lies and arrive at a final resource allo-
cation in O((NRB + logNRB) logNRB) steps. If enough
resources are unavailable for the Industry 5.0 system, one
or both must happen: (i) Subroutine 1 fails to maintain
cycle time constraint, (ii) Minimum transmission time
found by Subroutine 2 exceeds the cycle time of motion
control application.

D. Resource Requirement Analysis

During the planning phase of an Industry 5.0 system, it
is essential to get a rough estimate of the number of RBs
necessary (NRB) to satisfy performance metrics. The stringent
performance demands of the Industry 5.0 system lead us to
assess the peak bandwidth needs on the factory floor, notably
during remote human access, when reliable communication
must be supported between the remote workers’ room and the
mobile robot. Various system parameters, Probability Distribu-
tion Functions (PDFs) and Cumulative Distribution Functions
(CDFs) necessary for this analysis are given in Table I.

TABLE I: Parameters for calculating transmission delays

Description Notation
Number of AGVs on the factory floor M

Number of RBs assigned to the Industry 5.0 system NRB
Subcarrier spacing of the RBs ∆f

Path-loss factor inside the factory α
Noise spectral density inside the factory floor N0

Packets sizes of camera video, motion control,
mobile robot and remote workers’ room

sCamera, sMotion,
sMob, sRem

Tx. powers of 5G base station, cameras, mobile
robot and remote workers’ room

PB, PCam, PMob,
PRem

Distances from 5G base station to kth camera, ith
AGV, mobile robot and remote workers’ room

rkCam, ri,tAGV, rtMob,
rRem

PDFs governing Tx. delays from base station to 5G
base station to mobile robot, remote workers’ room,

kth camera, ith AGV

pMob(·), pRem(·),
pkCAM(·), piAGV(·)

CDFs governing Tx. delays from base station to 5G
base station to mobile robot, remote workers’ room,

kth camera, ith AGV

PMob(·), PRem(·),
Pk

CAM(·), P i
AGV(·)

Tx. delays from the base station to 5G base station
to the mobile robot, remote workers’ room, kth

camera, ith AGV

δMob
(
wt; gMob

t

)
,

δRem
(
zt; gRem

t

)
,

δk,tCAM

(
xk
t ;h

k
t

)
,

δi,tAGV

(
yit; g

i
t

)

Resource block estimation for remote access application:
The end-to-end delay violation probability for the remote
access application can be written as (refer to Section II-A and

Table I for the details of the parameters)

PRem = P [End-to-end delay ≤ ∆ARVR]

= P [Total transmission delay ≤ ∆1]

=

∫ ∆1

y=0

pRem(y)

(∫ ∆1−y

x=0

pMob(x)dx

)
dy

=

∫ ∆1

y=0

pRem(y)PMob(∆1 − y)dy.

(1)

This end-to-end delay violation probability must be kept below
10−6 to satisfy the 99.9999% availability requirement of the
Industry 5.0 system. The number of RBs needed to achieve
this target is denoted by NRem

RB . To estimate NRem
RB , we use the

following steps:

• Set the target probability: P˙Rem must be kept below
10−6 to satisfy the 99.9999% availability requirement of
the Industry 5.0 system.

• Initialize the amount of resource: Initially, we set
the value of NRem

RB to N̂1. We allocate the RBs to the
industrial components involved with remote access events
using Algorithm 1, described in Section III-C.

• Adjusting the amount of resource: We calculate PRem
using equation 1. For calculating the transmission delay
between the mobile robot and the base station, the dis-
tance from the mobile robot to the base station is set to
be the maximum distance of all possible locations (where
human workers can remotely access) to the base station.
This maximises the transmission delay, ensuring the need
for the most amount of network resources to achieve a
particular end-to-end delay violation probability. If PRem
exceeds 10−6, we double the value of N̂1.

• Optimise the value of NRem
RB : Once the desired PRem is

achieved, we use the binary search method in the range
[1, N̂1] to find the exact value of NRem

RB that can achieve
the target. This final step guarantees that the minimum
amount of resources is used to achieve the desired end-
to-end delay violation probability.

Resource block estimation for motion control application:
The amount of RBs needed to maintain the delay violation
probability of the motion control application to be less than
10−6 is denoted by NMotion

RB . The steps to calculate the lower
and upper bound of NMotion

RB can be summarised in the follow-
ing steps:

• Simulate AGV movements: We simulate the movements
of AGVs on the factory floor and track the number of
possible collision events over time.

• Identify critical scenarios: We pinpoint when most
AGVs are involved in potential collision events and
determine when most cameras are needed for floor moni-
toring. The sets of indices of AGVs and cameras in these
scenarios are denoted by S̃AGV and S̃CAM respectively.

• Delay probability calculation: The CDFs that govern
the overall uplink and downlink delays can be calcu-
lated as PUL(·) =

∏
k∈S̃CAM

P k
CAM(·) and PDL(·) =∏

i∈S̃AGV
P i

AGV(·). The corresponding PDFs are denoted
by pUL(·) and pDL(·). The end-to-end delay violation
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probability for the motion control application can be
written as PMotion =

∫∆2

y=0
pUL(y)PDL(∆2 − y)dy.

• Resource block estimation: To calculate the upper
bound of NMotion

RB , we use S̃AGV and S̃CAM and apply
Algorithm 1 (described in Section III-C). Similarly, for
the lower bound calculation we use the scenarios when
the fewest non-zero number of AGVs are in a collision
course and the fewest number of monitoring cameras are
needed, and once again apply Algorithm 1.

Combining both, we have a lower and upper bound of the
number of RBs (NRB) needed to satisfy the cycle times of
remote human access events and motion control applications
with 99.9999% certainty. To evaluate the performance of the
heuristic method developed in this section, it is important
to quantify the deviation from the optimal sequence of the
resource allocation process. In Section IV, we model our
system in a Reinforcement Learning framework which is
suitable for handling complex and dynamic industrial systems.
In Section V-A, we use this learning-based framework as the
benchmark for performance comparison with Algorithm 1.

IV. MODELLING INDUSTRY 5.0 SYSTEM IN A
REINFORCEMENT LEARNING FRAMEWORK

In this section, we use various Reinforcement Learning
(RL) methods as the benchmarks for the proposed real-time
allocation policy. RL methods offer a powerful framework
for addressing complex, dynamic decision-making problems
in Industry 5.0 systems. Their ability to learn optimal poli-
cies through interaction with the environment makes them
particularly well-suited for network resource allocation tasks.
However, RL approaches often come with significant computa-
tional overhead, especially in large-scale industrial settings. By
comparing our computationally efficient approach against RL-
based methods, we establish a robust benchmark that not only
validates the efficiency of our algorithm but also highlights
its practical advantages in real-time industrial applications.
This comparison provides insights into the trade-offs between
solution quality and computational efficiency, demonstrating
how our algorithm balances performance with the stringent
time constraints of dynamic Industry 5.0 environments.

A. Application-Aware System State description

In this subsection, we define the state of the industrial
system. The state description includes the variables necessary
to enumerate our system’s two objectives, namely (i) maintain-
ing safety on the factory floor and (ii) satisfying end-to-end
delay requirements of the motion control application and the
AR-VR-assisted remote access applications. The state at the
beginning of tth iteration of RB allocation is denoted by st.
The individual components of the state are described in the
following points.

• Positions of the AGVs and the mobile robot at the begin-
ning of tth iteration of RB allocation are included in the
state description, as any collision event can be judged by
these parameters. The set of positions of the AGV and the
mobile robot is denoted by Pt = {pm

t ,p
1
t ,p

2
t , . . . ,p

M
t }.

• The channel conditions inside the factory floor influence
the wireless communication system. Therefore, the chan-
nel gain parameters should be in the state description.
The channel gain parameters of our industrial system are
denoted as follows.
– The channel gain from the kth camera to the 5G base

station: hkt
– The channel gain from the 5G base station to the ith

AGV: git
– The channel gain of the channel between the mainte-

nance room and the 5G base station: gMain
t

– The channel gain of the channel between the mobile
robot and the 5G base station: gMob

t

• A binary variable (denoted by ϕt) is included in the state
description to indicate whether a remote access event is
happening on the factory floor. ϕt is set to 1 during a
remote access event.

• In the case of an ongoing remote access event, the amount
of force applied at the place of access and the tolerable
threshold for force is denoted by Ft and F̂t, respectively.
These parameters are set to zero when no remote access
event occurs on the factory floor.

B. Actions - RB allocation parameters

At the beginning of each time slot, the 5G base station allo-
cates RBs to the components of the Industry 5.0 system. The
parameters related to the RB allocation must be non-negative
integers. These parameters are summarized as follows.

• Number of RBs allocated to the kth camera: xkt
• Number of RBs allocated to the ith AGV: yit
• Number of RBs allocated to the mobile robot: wt

• Number of RBs allocated to the maintenance room: zt
Our resource allocation framework is based on the 5G New
Radio resource allocation architecture, where actions represent
the allocation of whole resource blocks to industrial compo-
nents. The action space is finite and discrete due to three
key properties: resource blocks are allocated as indivisible
units, allocations must be non-negative integers, and there’s
an upper bound on total available resources. The values
of the parameters listed above are found by the learning-
based framework. The total RBs allocated to the factory floor
components must not exceed the maximum available RBs. The
action parameters corresponding to the tth iteration of RB
allocation must satisfy the following inequality constraint.

C∑
k=1

xkt +

M∑
i=1

yit + wt + zt ≤ NRB

⇐⇒ f(Xt, Yt, wt, zt) ≤ NRB,

where Xt = {x1t , . . . , xCt } and Yt = {y1t , . . . , yMt }

(2)

C. Reward function

The reward function is defined as the negative of the cost
function. This reward function must be carefully designed to
satisfy the objectives of our industrial system by taking the
proper sequence of actions. We describe various penalties that
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constitute the cost function. Finally, we can add these penalties
and negate the value to calculate the reward.

• We penalize the actions if they cause collision events. The
number of collision events among the AGVs, between the
AGVs and the mobile robot, between stationary objects
and the AGVs, and between stationary objects and the
mobile robot is denoted by c11t , c12t , c13t and c14t . The
corresponding penalty weights are µ11, µ12, µ13, and µ14.
The combined penalty can be written as

p1(Pt) =

4∑
i=1

µ1ic
1i
t . (3)

In [25], we defined efficiency (denoted here by ηt) as
the total distance covered by the AGVs in a time frame
divided by the distance that the AGVs can move at their
maximum speed, and can be written as

ηt =
1

W

[
W−1∑
k=1

ηt−k +

∑M
i=1 d

i
t

vmaxMTS

]
. (4)

The numerator of the second term denotes the total
distance covered by M AGVs between tth and (t+1)th

RB allocation. If a collision occurs, the involved AGVs
stop operating until external intervention, reducing the
total distance covered and efficiency. Avoiding colli-
sions ensures all AGVs can move smoothly around
the factory, maximizing the distance covered and in-
creasing efficiency. Thus, minimizing collision events
maximizes efficiency. The set of distances covered is
Dt = {d1

t , . . . ,d
M
t }. Assuming the weight of the cost

to be µ2, the corresponding cost is defined as

p2(Dt) = µ2(1− ηt). (5)

• If the force exerted at the remote access site exceeds the
tolerance limit, we impose a severe penalty with a weight
value of µ3. The corresponding penalty function can be
written as

p3(Ft, F̂t) = µ31Ft>F̂t
(Ft − F̂t). (6)

• Actions are heavily penalized if they violate the resource
inequality constraint described in (2). The corresponding
penalty function has weight µ4 and is given by

p4(Xt, Yt, zt, wt) = µ41f(Xt,Yt,zt,wt)>NRB . (7)

So the overall reward can be written as

Rt = −
[
p1(Pt) + p2(Dt) + p3(Ft, F̂t) + p4(Xt, Yt, zt, wt)

]
.

(8)

Our heuristic real-time allocation algorithm shares fundamen-
tal objectives with learning-based methods, including prevent-
ing AGV collisions and maintaining safe operating conditions.
Both approaches consider complex state information, but while
learning-based methods use this to evolve a policy over time,
our heuristic method employs it for immediate, rule-based
decision-making. The key distinction lies in how constraints
are handled: learning-based methods incorporate them into
a cost function, whereas our approach inherently satisfies

constraints at each step. The first two components of the
reward function are increased as the cycle time of the motion
control application is satisfied. Similarly, maintaining the cycle
time constraint of the remote access application is critical to
increasing the third component of the reward function. The
final component of the reward function corresponds to the
resource constraint in Algorithm 1.

D. RL methods for benchmarking

To benchmark our heuristic algorithm, we select a diverse
set of RL methods that represent different approaches to policy
optimization. These methods have shown promising results in
various complex decision-making tasks, making them suitable
comparators for our network resource allocation problem in
an Industry 5.0 environment.

• Monte Carlo RL: It is a model-free approach that can
handle unknown environment dynamics, which is benefi-
cial in complex Industry 5.0 systems [28]. This method
requires complete episodes for learning via extensive
exploration, which becomes infeasible as the number of
AGVs and cameras increases.

• Deep Q-Learning (DQL): DQL is well-suited for han-
dling high-dimensional state spaces common in Industry
5.0 systems [28]. Although DQL can handle the di-
mensionality problem to a certain extent, the number of
outputs (Q-values for all state-action pairs) becomes too
high when the number of AGVs and cameras increases,
and can become unstable during training.

• Deep Q-Network (DQN): DQN provides an alternative
approach to solving our network resource allocation prob-
lem [28]. In contrast to the deep Q-Learning method,
we try to find the mapping between the states and the
best possible actions in this approach, which cuts the
dimension of the neural network’s output enormously.
DQN may struggle with very large action spaces and can
be sample inefficient, potentially challenging in rapidly
changing Industry 5.0 scenarios.

• Proximal Policy Optimization (PPO): Although PPO
is well-suited for continuous state spaces and can handle
discrete actions effectively and offer good sample effi-
ciency and stability, it requires careful hyperparameter
tuning and can be computationally intensive for large-
scale Industry 5.0 system [29].

• Advantage Actor-Critic (A2C): A2C is capable of han-
dling continuous state spaces and discrete actions [29].
Its synchronous nature can lead to more stable training
in dynamic environments. However, it converges slower
than some other methods and can be sensitive to learning
rate settings.

• Trust Region Policy Optimisation with Lagrangian
approach (TRPO-Lagrangian): TRPO-Lagrangian is a
safeRL method, ensuring more stable policy updates,
which is valuable in industrial settings with stringent
performance requirements [30]. SafeRL, unlike tradi-
tional RL, incorporates safety constraints directly into the
learning process, ensuring policy improvements without
performance degradation. On the flip side, TRPO is
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computationally more expensive and converges slowly in
a highly dynamic industrial environment.

V. SIMULATION RESULTS

We can broadly divide the simulation results section into
five subsections. In the first subsection, we compare the
performance of network resource allocation using various
learning methods described in Section IV-D and the heuristic
approach developed in Section III-C. In the second subsection,
we show how selective RB allocation of cameras and AGVs
leads to better scalability in terms of the number of AGVs
and cameras associated with an industrial process, compared
to our previous work [25]. In the third subsection, we show
how well our theoretical estimates perform compared to actual
resource requirements. In the fourth subsection, we compare
the performance of the network resource allocation policy
described in Algorithm 1 with our method discussed in [25],
and also with some of the existing policies for allocating
network resources in an industrial setting [6], [7], [8]. In the
final subsection, we show how maintaining a high degree of
availability can ensure the proper functioning of industrial
applications.

We consider an industry floor with an area of 1 km×1 km
for the simulation setup. The field of view of each camera
is 100 m. The time-stamps of the remote access events are
generated using an exponential distribution with the parameter
0.005, that is, on average a remote access event occurs at
an interval of 16.67 minutes. The remote access locations
by human workers are selected using a uniform random
distribution defined over the factory floor area. We consider a
particular type of remote access work that requires a human
worker to remove an obstacle weighing 500 g remotely. The
grip force applied by the human worker is in the range 10
N and 15 N [31]. The other details of the simulation setup
are provided in Table II. We simulate this Industry 5.0 system
using OMNet++ version 6.0 integrated with SimuLTE, which
provides a 5G network backbone. While the values of different
parameters used in the simulation are practical values taken
from cited sources, the simulation setup is not connected to
any real system. We have used a computer setup with 128
GB RAM and an Intel Xeon processor with 20 cores. For
simulating the Industry 5.0 system using the heuristic method
of RB allocation, we have used a MacBook Pro with a 3.1 GHz
Dual-Core Intel Core i5 processor, Intel Iris Plus Graphics 650
1536 MB, and 8 GB RAM.

TABLE II: Simulation setup

Parameter Value
Monitoring camera resolution 1920× 1080 at 60 fps

Size of packets generated by cameras 25 Kb
Size of packets generated by mobile robot 65 Kb

Size of the motion control messages 500 bytes [2]
Cycle time of motion control application 100 ms [1]
Cycle time of remote access application 45 ms [32]
Values of δProc and δMotion (Sec. IV-A) 1 ms and 0.5 ms [1]
Values of δPerc and δHaptic (Sec. IV-A) 25 ms [33] and 1 ms [1]
Subcarrier spacing (∆f ) of the RBs 15 kHz

Maximum speed of AGVs and mobile robot 2 m/s

A. Comparison of Learning-based Methods versus Heuristic
Method

In this subsection, we compare the performance of various
RL methods (Section IV-D) and heuristic algorithm (Section
III-C) in an Industry 5.0 system with varying numbers of
AGVs and monitoring cameras. We use distance-based and
set cover-based selection for AGVs and cameras. In Fig. 2,
we use several RL methods, namely Proximal Policy Opti-
mization (PPO), Advantage Actor Critic (A2C), Trust Region
Policy Optimization (TRPO) and Deep Q-network (DQN), and
compare their performance with Algorithm 1. Each episode of
the simulation consists of 105 steps. The reward is calculated
as described in Section IV-C. When the number of AGVs and
cameras is relatively low (Fig. 2(a)), it appears that A2C is the
fastest to approach the optimal reward that can be found by it.
As the number of AGVs and cameras is increased (Fig. 2(b)
and Fig. 2(c)), DQN outperforms the other methods in terms of
converging towards the optimal reward. TRPO-Lagrangian is
a safe RL method developed by OpenAI [30]. For our system,
this method does not surpass the other RL methods even after
1000 episodes, as shown in Fig. 2(a).

For simpler factory settings (Fig. 2(a)), the RL methods
can achieve better reward compared to our heuristic algorithm,
but as we increase the number of AGVs and cameras, the RL
methods converge very slowly due to the higher dimensionality
of the state space, and running these algorithms for a thousand
episodes becomes untenable. Algorithm 1 on the other hand
achieves better reward than the RL methods with far less
computation (Fig. 2(b) and Fig. 2(c)).

If we compare the reward values for different numbers of
AGVs and cameras in Fig. 2(a)-(c), it seems that the reward
goes up as we increase the number of AGVs to a certain
extent and then it falls as we further increase the number of
AGVs. The area of operation remains the same. If we keep
on adding AGVs, it restricts their motion after a certain point
and hampers smooth operation and this explains the trend of
reward values.

B. Application-aware resource allocation

In Fig. 3a, we vary the number of AGVs and compare
the average number of AGVs and cameras polled during a
single phase of RB allocation using different methods. Due to
the scalability issue associated with learning-based methods,
we cannot go beyond 12 and 24 AGVs for DQL and DQN
methods. It is evident from Fig. 3a that we do not need to
allocate RBs to all AGVs and cameras all the time. Selective
RB allocation based on safety requirements on the factory
floor leads to more efficient use of valuable network resources.
Our heuristic method does not look at the future states of the
factory floor and is inherently myopic. Therefore, it slightly
outperforms the learning-based techniques. However, we can
use the heuristic approach for RB allocation in an Industry 5.0
system with more AGVs.

While RL approaches offer powerful solutions for many
complex problems, the specific nature of our industrial floor
resource allocation scenario presents unique challenges that
favor our proposed heuristic method. The dynamic nature of
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Fig. 2: These figures compare the performance of various reinforcement learning methods and a heuristic algorithm in terms of reward over
episodes. For an industry setting with fewer AGVs and cameras, RL methods achieve higher rewards compared to the heuristic algorithm
(Algorithm 1). Due to the computationally intensive nature of RL methods, the heuristic algorithm achieves better reward when more AGVs
and cameras are added.
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Fig. 3: These figures show the average number of AGVs and cameras polled during resource block allocation for different methods as the
number of AGVs increases. Selective resource block allocation based on safety requirements leads to more efficient use of network resources,
with the heuristic method showing better scalability than learning-based approaches.

our environment, where the number of active AGVs and cam-
eras can fluctuate, challenges the adaptability of pre-trained
models. Our heuristic method addresses these issues through
its polynomial time complexity with respect to the number
of AGVs and cameras, ensuring scalability as the system
grows. The heuristic method’s adaptability to changing en-
vironmental conditions without requiring extensive retraining
gives it a significant advantage in dynamic industrial settings.
This balance of efficiency, scalability, and adaptability makes
our proposed method particularly well-suited for the real-
time resource allocation challenges in modern, flexible man-
ufacturing environments. We can find the final policy using
less computational burden when we incorporate the heuristic
method discussed in Section III-C as a model for determining
policy using the learning-based frameworks. In Fig. 3b, we
have added more AGVs in this model-based learning setup,
and it is clear that the learning-based method outperforms
our heuristic method of resource allocation. Model-based
learning techniques are superior in performance compared

to the model-free learning methods. The selective allocation
of AGVs and cameras based on industrial states leads to
less resource usage. It allows for more industrial components
to be connected to the wireless network using the available
resources, improving the scalability of the industrial system.

C. Theoretical Estimates
In Fig. 4, we plot the theoretical estimates of upper and

lower bounds of NRB, which are calculated using the statistical
method described in Section III-C, and compare them with
the actual RB requirement to achieve 99.9999% availability.
In Fig. 4, we use 5 and 10 cameras for monitoring the
factory floor. The estimated lower bound based on selective
RB allocation to AGVs and cameras provides a strict bound.
To calculate the upper bound, we allocate RBs to all compo-
nents. So, the gap between the upper bound and the actual
requirement is quite significant as the number of AGVs and
cameras increases. We need far fewer RBs to get 99.9999%
availability if the RB allocator makes decisions based on the
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Fig. 4: This figure plots the theoretical upper and lower bounds of
required resource blocks (RBs) against the actual requirement for
achieving 99.9999% availability as the number of AGVs increases.
The selective RB allocation approach requires significantly fewer RBs
than allocating to all components, improving system scalability.

industrial application. As a result, we can accommodate more
AGVs and other industrial components into the 5G network,
thus increasing the scalability of the Industry 5.0 system.

D. Comparison with Existing Resource Allocation Policies
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Fig. 5: These figures compare the performance of the proposed policy
(Policy 1) with existing network resource allocation schemes (Policy
2 [25], Policy 3 [6], Policy 4 [7], and Policy 5 [8]). The application-
aware allocation in Policy 1 achieves 99.9999% availability with
nearly 50% fewer resource blocks compared to other policies, en-
hancing bandwidth usage efficiency and scalability.

In Fig. 5, we compare the performance of our real-time
heuristic method for RB allocation (Policy 1), with the policy
described in our work [25] (Policy 2) and some of the exist-
ing RB allocation policies in literature for industry settings,
namely - [6] (Policy 3), [7] (Policy 4), and [8] (Policy 5). In
[25] (Policy 2), we formulate a myopic optimization problem
for RB allocation aiming to maximize the efficiency of the
industrial process and minimize the end-to-end delay and

provide an algorithm to solve the problem. In Policy 3, the
industrial applications are prioritised for resource allocation
based on QoS demands and queuing delays. In Policy 4,
an optimization framework has been designed for resource
allocation to maximize energy efficiency. The authors suggest
designing fixed network slices for eMBB and URLLC applica-
tions targeting to maximize throughput and spectral efficiency.
In all policies except Policy 1, the RB allocation process is
detached from the state of industrial applications. In Fig. 5a
and Fig. 5b, we use 5 cameras to monitor, and the number of
AGVs are 8 and 16. Due to the application-aware allocation in
Policy 1, we achieve 99.9999% availability for motion control
and remote access applications with fewer RBs (nearly 50%
reduction compared to the best policy) compared to the other
policies. Increased bandwidth usage efficiency allows us to
accommodate more industrial devices in the 5G network, thus
improving scalability.

E. Availability and Scalability

Fig. 6: The figure shows how availability and location data accuracy
(NMSE) depend on the number of available network resources and
compares resource usage efficiency between the proposed policy
and our previous work [25]. Increased network resources improve
availability and data accuracy, while the selective allocation approach
allows for connecting more AGVs with the same amount of resources,
enhancing system scalability.

In Fig. 6(a), we show how the availability of our industry
5.0 framework depends on the number of available network
resources and also how the availability factor affects the
accuracy of the industrial data maintained at the edge server.
We plot the availability and the Normalised Mean Square
Error (NMSE) of the location data of the AGVs concerning
the number of resource blocks allocated for the industrial
system. The actual position of the ith AGV and the position
data estimated at the edge server are denoted by pi

t and
p̂i
t respectively. Then the NMSE of the positions of the

AGVs throughout the duration of the industrial system can
be calculated as

NMSE =
1

MT

T∑
t=1

M∑
i=1

∥pi
t − p̂i

t∥22
∥pi

t∥22
. (9)
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As we increase network resources, more industrial components
can be connected to the wireless network while increasing
the probability of maintaining the cycle times of the motion
control and remote access applications. This leads to improved
availability (top half of Fig. 6(a)). With access to more
bandwidth, it is possible to establish efficient and reliable
communication between the factory floor and the edge server
and the cycle time constraint of motion control application
is satisfied with a very high degree of availability. So, the
positional data of the AGVs at the edge server is timely
updated, leading to better accuracy of the perception by the
motion controller about the actual industrial system and the
NMSE of the positions of the AGVs goes down (bottom half
of Fig. 6(a)).

In Fig. 6(b), we compare the resource usage for the heuristic
policy described in this work and the policy designed in our
previous work [25]. By selectively allocating resources to the
AGVs and cameras, as done in the proposed policy, we can
improve the usage efficiency of the network resources. As a
result, more AGVs can be connected to the wireless network
using the same amount of resources, compared to our previous
work.

VI. CONCLUSIONS AND FUTURE WORKS

This work presents RB allocation policies for an Industry
5.0 system with AR-VR-assisted remote human access. We
propose a real-time heuristic allocation method that is aware
of the states of the industrial applications, which leads to
improved network resource usage efficiency and enhanced
scalability of the industrial system. We also develop a statis-
tical method to estimate upper and lower bounds for resource
requirements to achieve the desired availability using our
policy. Compared to some of the existing policies, our policy
requires 50% less RBs to achieve 99.9999% availability.
We model the Industry 5.0 system in an RL framework to
compare the performance of our policy, which has a significant
computational advantage over RL methods.

In our future work, we intend to incorporate different
Industrial applications such as - floor monitoring using various
sensors and analyse how we can build a real-time resource
allocation policy to meet the desired performance targets.
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