Punit Rathore, Aravinda S. Rao, Sutharshan Rajasegarar, Elena Vanz, Jayavardhana Gubbi, Marimuthu Palaniswami
IEEE Internet of Things Journal, Volume 5, Issue 2, pp. 500–511
Publication year: 2018


Real-time environment monitoring and analysis is an important research area of Internet of Things (IoT). Understanding the behavior of the complex ecosystem requires analysis of detailed observations of an environment over a range of different conditions. One such example in urban areas includes the study of tree canopy cover over the microclimate environment using heterogeneous sensor data. There are several challenges that need to be addressed, such as obtaining reliable and detailed observations over monitoring area, detecting unusual events from data, and visualizing events in real-time in a way that is easily understandable by the end users (e.g., city councils). In this regard, we propose an integrated geovisualization framework, built for real-time wireless sensor network data on the synergy of computational intelligence and visual methods, to analyze complex patterns of urban microclimate. A Bayesian maximum entropy-based method and a hyperellipsoidal model-based algorithm have been build in our integrated framework to address above challenges. The proposed integrated framework was verified using the dataset from an indoor and two outdoor network of IoT devices deployed at two strategically selected locations in Melbourne, Australia. The data from these deployments are used for evaluation and demonstration of these components’ functionality along with the designed interactive visualization components.