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Abstract—In this paper, we model a futuristic factory floor
equipped with Automated Guided Vehicles (AGVs), cameras, and
a Virtual Reality (VR) surveillance system; and connected to a
5G network for communication purposes. Motion planning of
AGVs and VR applications is offloaded to an edge server for
computational flexibility and reduced hardware on the factory
floor. Decisions on the edge server are made using the video
feed provided by the cameras in a controlled manner. Our
objectives are to ensure factory floor safety and provide smooth
VR experience in the surveillance room. Providing proper and
timely allocation of network resources is of utmost importance
to maintain the end-to-end delay necessary to achieve these
objectives. We provide a statistical analysis to estimate the
bandwidth required by a factory to satisfy the delay requirements
99.999 percent of the time. We formulate a nonconvex integer
nonlinear problem aiming to minimize the safety and delay
violations. To solve it, we propose a real-time network resource
allocation algorithm that has linear time complexity in terms of
the number of components connected to the wireless network.
Our algorithm significantly outperforms existing solvers (genetic
algorithm, surrogate optimizer) and meets the objectives using
less bandwidth compared to existing methods.

Index Terms—Industry 4.0, Virtual Reality, Automated Guided
Vehicle, Resource Block, Network Resource Allocation

I. INTRODUCTION

We are on the cusp of a new industrialization known as
Industry 4.0, driven by different applications (engineering
demands) combined with digital advancements, which are the
main drivers of this new revolution [1], [2]. The need for these
demands arises primarily due to: shortening the development
period, mass customization, highly flexible production meth-
ods, faster decision-making with a decentralized hierarchy,
and promoting ecologically sustainable and resource-efficient
processes. Connectivity is a crucial component for integrating
IoT into Industry 4.0, where thousands of devices (such as
sensors, actuators, automated guided vehicles (AGVs), mobile
robots, etc.) need to connect for the smooth operation of the
smart manufacturing processes.

The main objectives of a smart manufacturing system are to
provide flexible production to meet the increasing demands for
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customization, increase productivity, and improve production
quality through autonomous operations and monitoring [3]. To
achieve these goals, the production lines of smart manufactur-
ing systems must become more versatile, flexible, safe, and
reliable. The integration of a new 5G radio (NR) into smart
manufacturing can bring about all these important aspects of
smart manufacturing by providing a reliable communication
system with high data rate and low latency [3–5]. 5G and be-
yond networks promise support for Industry 4.0 applications.
In addition, 5G provides a reliable connection to edge/cloud
servers and promotes centralized control of applications on
the edge / cloud. For example, motion control functions can
be offloaded to the edge server to save hardware costs, increase
flexibility in terms of mobility (owing to wireless connections)
and improve storage capacity and computational power for
scalability on demand in the factory floor [3], [6], [7]. The
motivation behind our work is threefold: (i) increase scalability
in terms of the number of AGVs on the factory floor, (ii)
maintain safety on the factory floor, and (iii) estimate the
network resource requirement along with a real-time allocation
policy to satisfy the end-to-end delay requirement for the
VR maintenance system with 99.999% availability. In the
following paragraphs, we give an overview of our approaches
to meet these objectives.
• Improve scalability by considering the synergy among

various components of the Industry 4.0 system: In an
automated Industry 4.0 system, in addition to the data injection
process on the floor (video feed from the monitoring camera
system on the factory floor) and the network scheduler, another
critical component is the motion control of the AGVs. In
our work, motion control-related functions are implemented
on an edge server. An efficient communication system must
be provided between the factory floor and the edge server
for the smooth operation of such an industrial system. In this
work, we demonstrate that the process of data injection from
the factory floor to the communication system, the motion
controller function on the edge server, and the communication
system between the factory floor and the edge server are the
three key components that dictate the proper functionality of
an Industry 4.0 system.

In traditional communication systems, the sources of data
injection into the wireless network are unregulated, indepen-
dent, and not under the control of the network scheduler.
Therefore, the network scheduler designs network resource
allocation policies to distribute limited network resources to
meet the different quality of service (QoS) requirements of
data-generating sources. However, in an Industry 4.0 setting
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where motion control-related functions are implemented on
an edge server, sending a continuous video feed from the
factory floor is less useful if the corresponding motion control
decisions are not received by the AGVs in time. Therefore, it is
very important to control the injection of data from the factory
floor to the wireless network to maximize the efficiency of the
usage of network resources.

In the literature, a few works have analyzed network-
controlled systems with communication constraints [8], [9].
In these works, the controller does not regulate the data in-
jection process. However, in an Industry 4.0 system where the
controller functions are placed on an edge server, the control
decisions based on the most recent camera video feed must
reach the appliances on the factory floor before the next video
feed is received. Therefore, it is obvious that the data injection
process must be controlled along with resource allocation.
Another major issue with existing approaches on network-
controlled systems is that the controller function is assumed
to be a continuous function. However, in a practical setup
like the one considered in this work, the motion controller
is a complex algorithm [10] that cannot be expressed as a
continuous function of the input variables.

Therefore, we focus on controlling the injection of data into
the wireless network on the factory floor according to the
conditions of the channel inside the factory and the criticality
of motion of the AGV. This allows us to allocate network
resources to a greater number of AGVs and improve the
scalability of the industrial process. In other words, for an
industrial process with a fixed number of AGVs, we can
achieve the QoS requirements with fewer network resources.
In the results section, we show that controlling the data
injection process on the factory floor in accordance with
motion control and traffic scheduling brings about nearly 25%
to 30% less usage of network resources while still achieving
99.999% availability in terms of end-to-end delay.
• Network resource allocation policy with multiple

objectives to reduce end-to-end delay violations and max-
imize safety: A factory floor might be subject to emergency
hazardous situations demanding human intervention. This re-
quires a remote monitoring system for the smooth operation
of a smart manufacturing process. Virtual Reality (VR) and
Augmented Reality (AR) are part of a growing Industry
4.0 ecosystem. These technologies have been considered to
be the main 5G application use cases due to their very
high bandwidth and strict latency requirements [11]. VR/AR
developers agree that for Motion-to-Photon (MTP) latency
to become imperceptible, the application round-trip latency
should be less than 15-20 ms [11], [12]. Therefore, the end-
to-end delay must be regulated by a proper resource allocation
strategy. On the other hand, proper delivery of motion controls
is also important for correctly guiding AGVs on the factory
floor and maintaining a safe environment.

Keeping the aforementioned issues in mind, we design a
network resource allocation policy that satisfies both the end-
to-end delay requirement for the VR maintenance system and
the AGV safety requirement that dictates the productivity of
the Industry 4.0 system. If we remove the safety criterion
from the network resource allocation problem, the AGVs may

not be able to receive enough resources to receive the motion
controls, which in turn increases the risk of collisions on the
floor. On the other hand, if we remove the end-to-end delay
requirement, the network resource allocation process is con-
cerned only with the safety of the factory floor, and as a result,
the round-trip delay requirement for VR maintenance is not
considered at all. Therefore, we propose a joint optimization
problem in our work and develop a network resource allocation
policy based on the optimization framework.

A. Related works

In the literature, a lot of work has been done on different
aspects of Industry 4.0 systems, such as navigation, control,
scheduling and path planning for AGVs, VR/AR frameworks
for the smart factory, wireless communication systems inside
the factory, etc. We briefly discuss some of the relevant work.

Extensive research has been done on the applications of
AGV technology in smart manufacturing [13]. They can be
roughly divided into the following groups: (a) algorithms
for localization, scheduling, docking, and path planning al-
gorithms; (b) navigation control and guidance algorithms; (c)
wireless communication between AGVs; (d) power consump-
tion and management; and (e) AGV design and applications.

In recent years, VR/AR technology has been envisioned
as a critical tool for remote maintenance of future smart
factories [14–16]. VR helps visualize a factory floor, which
can be used for maintenance training, to predict design defects,
etc. [16]. Several works have been carried out on different
aspects of VR/AR in the context of Industry 4.0, such as (a)
developing methods for data collection from the factory floor
and visualization [17–19], and (b) designing edge computing-
based architecture for VR/AR applications [20–22].

As mentioned previously, there has been a growing trend
of moving VR/AR applications to the edge server, aided
by the powerful wireless framework supported by 5G [20–
22]. Similarly, the controller functions necessary for a smart
manufacturing system are also expected to be moved to edge
servers [3], [23], [24]. Although edge/fog computing brings
about many advantages on the computing side, there is a
limitation in terms of high delay that can disrupt delay-
sensitive VR/AR devices and control functions. The authors
of [23] investigate the consequences of moving toward cloud-
based controllers using existing frameworks. To reduce the
problem of delays, a smart manufacturing process with edge-
based control systems must have enough network resources
and a good policy for allocating those resources. Very few
works in the literature [25–27] have used heuristic and greedy
approaches to address the issue of bandwidth allocation in an
Industry 4.0 setting. To the best of our knowledge, no work
in the literature explores the resource allocation problem for
smart manufacturing systems with an edge-based controller.

B. Contributions

The summary of our contributions in this work is as follows:
• Modelling a smart factory: We model a fully automated

smart factory system containing stationary robots, AGVs,
a monitoring camera system, and a VR surveillance
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Fig. 1: Sequence of operation at a fully automated factory floor: (1) 5G base station allocates network resources to the camera system
(Camera1, · · · ,CameraC ) at the factory floor, (2) The edge server receives the video feed from base station via a wired connection and
process it, (3) Edge server forwards the VR 360◦ video and motion controls to the base station, (4) Base station allocates network resources
to the surveillance system and AGVs (AGV1,AGV2, · · · ,AGVM ), (5) VR 360◦ video and motion control decisions are received by the
surveillance system and AGVs respectively.

system. Industrial controller functions are offloaded to
an edge server. We consider various streams of commu-
nication among the components of the smart factory that
affect the functionality of the industrial system.

• Controlled data injection to the wireless network: We
control the flow of camera video feed from the factory
floor to the edge server, which is a departure from
traditional wireless communication systems where data-
generating sources are not regulated. In the Industry 4.0
system, the camera video feed and the corresponding
control decisions go hand in hand, requiring us to control
the data injection process for a superior use of network
resources. Our controlled data generation approach re-
duces network load, which is a key innovation in factory
floor settings.

• Delay, safety, and efficiency: The delay in end-to-end
communication between the factory floor and the edge
server affects the safety of the factory floor, as well as
the VR experience. We connect the delay and safety
requirements with the allocation of network resources
to the various industrial components connected to the
wireless network. Then, we develop a non-convex in-
teger nonlinear programming with a network resource
constraint, aiming to reduce the events of delay and safety
violation. This is a novel problem formulation compared
to existing approaches in the literature.

• Estimation of necessary network resources: In the plan-
ning phase of a smart factory floor, it is important to have
a good estimate of the necessary network resources for
the design of the network slice. We provide a statistical

method to estimate the lower bound of the amount of
bandwidth necessary to achieve 99.999% availability in
terms of latency, safety, and efficiency for a smart factory
system. To the best of our knowledge, our work is the
first to provide such an estimate.

• A linear algorithm for real-time network resource allo-
cation: We propose an algorithm for real-time network
resource allocation that has linear complexity in terms
of the number of AGVs and the number of monitoring
cameras. Our algorithm outperforms global optimizers
(such as genetic and surrogate optimization algorithms)
and is suitable for real-time resource allocation.

The remainder of the paper is organized as follows. In Section
II, we describe the model of the smart factory floor system.
In Section III, we define various streams of communication
related to factory functionality and discuss the resource allo-
cation architecture of the 5G NR. In Section IV, we define
the system parameters and functions necessary to analyze our
problem. We describe the design and operational phases of the
Industry 4.0 system in Section V. In Section VI, we develop a
real-time network resource allocation policy and a correspond-
ing linear-time algorithm to solve it. Extensive simulation
results are given in Section VII. Finally, we conclude and give
possible future directions in Section VII.

II. SYSTEM MODEL

We consider a factory floor where mobile robots / automated
guided vehicles (AGV) are used in an automation process as
shown in Fig. 1. Each AGV is assumed to move forward
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and backward between two stationary robots, following a
fixed path. A 5G base station is located near the factory
complex [28]. Cameras, AGVs, and surveillance gadgets are
interconnected over the 5G NR network.

It is of utmost importance to properly control the motion of
the AGVs to avoid collisions between the AGVs and maintain
proper functionality on the factory floor. Motion planning-
related functions are deployed on an edge server, which is
connected to the 5G base station via a wired connection.
Safety-related control functions are retained on board the
AGVs, allowing them to prevent collisions in the absence
of motion controls from the edge server (due to network
connectivity issues). The factory floor is monitored by a video
camera system mounted on the walls of the factory floor
[3]. Once motion control decisions based on the previous
video feed are sent to the edge server AGVs, the 5G base
station allocates network resources to the camera system for
transmitting the most recent video feed. Older video feed that
was not previously transmitted is discarded, as these data do
not contribute to deciding the future motion controls. So, in
our system, the process of data injection to the 5G network
is not independent like other wireless communication systems
but is carried out in a controlled fashion. The industry is also
equipped with a virtual reality surveillance system. The video
feed from the factory floor is processed at the edge server
for machine vision processing and estimation of an object’s
position, velocity, and orientation in the physical environment,
and for the creation of VR 360◦ video of the factory floor.
Motion control decisions and VR 360◦ video are sent back to
the 5G base station from the edge server. Motion controls are
transmitted to AGVs and VR 360◦ video is transmitted to the
surveillance room of the factory floor.

The performance of operations at a smart factory floor
depends heavily on the availability of the communication
system inside the factory. The term availability means the
“communication service availability” inside the factory. A
system is considered to be available only if it satisfies all
required QoS parameters, such as latency, data rate, efficiency,
etc. [4]. For smooth operation on the factory floor, the desired
target value of availability should be greater than 99.999%
[3]. In this work, we provide a network resource allocation
policy and a method to estimate a lower bound on the number
of network resource blocks necessary to maintain 99.999%
availability in terms of latency (i.e., delay violation probability
≤ 0.001) and safety at the factory floor.

III. NETWORK RESOURCE ALLOCATION PROBLEM

A. Communication Streams
The timeline of the factory floor is slotted into intervals

of TS . The video feed from the camera can be sent at the
beginning of a slot. In general, there are five communication
streams in our model, three wireless communication streams,
and the rest are wired communication through optical fibers.
Only the wireless communication streams are relevant to our
analysis (marked with *).

(1) *Camera to 5G base station (wireless): Video feed is
transmitted from the camera to the 5G base station at
the beginning of a slot (as requested by the edge server).

(2) 5G base station to the edge (wired): The video feed
from the camera system is sent to the edge server
through a wired connection (optical fiber).

(3) Edge to 5G base station (wired): The motion controls
of the AGVs are decided and the VR 360◦ video is
created at the edge server and sent to the 5G base station.

(4) *5G base station to the camera (wireless): 5G base
station requests the camera system to provide the next
video feed after receiving motion control data and VR
360◦ video from the edge server.

(5) *5G base station to AGVs (wireless): 5G base station
forwards the motion control parameters to AGVs.

(6) *5G base station to surveillance room (wireless): The
VR 360◦ video feed is transmitted to the surveillance
room.

B. Resource Block Allocation

Fig. 2: 5G New Radio Resource Block Architecture [29]

5G NR is a new radio access technology developed by 3GPP
for the 5G (fifth generation) mobile network [30] (shown in
Fig. 2). In 5G NR, network resource blocks are allocated
to users according to their QoS requirements. According to
3GPP TS 38.211 version 16.3.0 release 16, a Resource Block
(RB) is a block of 12 consecutive subcarriers in the frequency
domain. 5G NR provides different subcarrier spacings that can
be obtained by multiplying the base long-term evolution (LTE)
subcarrier spacing (180 kHz) by 2µ, where µ = 0, 1, 2, 3, 4.
The Transmission Time Interval (TTI) duration, which is 1
ms for µ = 0, is scaled down by 2µ. The maximum number
of available RBs depends on the subcarrier spacing and the
maximum available channel bandwidth [31]. The time interval
TS (defined in Section III-A) is assumed to be an integer
multiple of the TTI.

In this work, we focus on massive Machine Type Commu-
nications (mMTC) with stringent delay requirements. For the
Ultra Reliability and Low Latency Communications (URLLC)
pertaining to different sensors on the factory floor, it is as-
sumed that a separate network slice is available. In our system,
we are concerned about the allocation of RBs to cameras,
AGVs, and surveillance system by the 5G base station. Upon
receiving the motion control parameters and VR 360◦ video
from the edge server, the 5G base station allocates the available
RBs among the AGVs and the VR surveillance system to send
the control decisions and VR video feed, respectively. Once the
surveillance system and all AGVs acknowledge the retrieval of
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the messages, the 5G base station then assigns the RBs among
the cameras. The RB allocations must be done judiciously to
keep transmission delays within the tolerable level. We assume
flat fading inside the factory floor [26]. Therefore, we are
only concerned about the number of RBs allocated to different
components of the automation process.

IV. PROBLEM FORMULATION

The factory floor under consideration employs M AGVs for
the automation process. The start and end coordinates of the
ith AGV are denoted by si = (sxi , s

y
i ) and ei = (exi , e

y
i ). The

AGVs move between their respective source and destination
on predefined paths. The maximum achievable velocity for
each AGV is vmax. The AGVs must maintain a minimum
distance to prevent collision events, which is referred to as the
collision avoidance radius and is denoted by ra. The factory
floor is monitored by the C number of cameras mounted on
the walls. We send the video feed from the camera system
to the edge server in a controlled manner. The index of the
time slot when the edge server requests the cameras to provide
the nth video feed to the 5G base station is denoted by kn.
The video feed consists of a fixed number of video frames
just before the kthn time slot. We analyze the system for a
finite number of video transmission requests (denoted by N ).
N depends on the duration of the industry operation. The
key system parameters are summarized in Table I. Now we
define certain key parameters related to motion and resource
allocation. Then, we discuss the mutual dependence between
the resource allocation problem and the motion controller
on the edge server. Finally, we discuss the constraints and
objectives of our problem.

A. Motion and Resource Allocation Related Parameters

In this subsection, we shall discuss the motion related pa-
rameters for the AGVs and the resource allocation parameters
for the network resource allocation problem. The controller on
the edge server extracts the motion parameters from the video
feed provided by the camera system. Position, velocity, and
acceleration of the ith AGV at the beginning of the nth video
transmission (as calculated at the edge server) are denoted by
pi(kn), vi(kn), and ai(kn) respectively. The distance traveled
by the ith AGV starting at the kthn time slot until the kthn+1

time slot is denoted by di(kn). If an AGV detects any obstacle
on its current trajectory, it will stop before the obstacle comes
within its collision avoidance radius.

The number of resources available on the factory floor is
denoted by NRB. The spacing of the subcarriers of the RBs
is ∆f . Let xk(n) denote the number of RBs allocated to the
kth camera prior to nth video transmission. The transmission
delays over wireless channels depend on both the number of
allocated RBs and the channel conditions. The gain of the
channel from the kth camera to the 5G base station at the
beginning of the nth video transmission is denoted by hk(n).
Once the 5G base station receives messages (based on the
nth video transmission) from the edge server, the 5G base
station allocates the RBs among the cameras and the VR
surveillance system. The number of RBs assigned to the ith

TABLE I: List of system parameters

Parameter Definition
TS Slot duration
C Number of cameras at the factory floor
M Number of AGVs at the factory floor
N Number of video transmissions
ra Collision avoidance radius
vmax Maximum velocity of each AGV

(sxi , s
y
i ) Start coordinates of the ith AGV

(exi , e
y
i ) End coordinates of the ith AGV

NRB Number of available resource blocks
∆f Sub-carrier spacing
θ Threshold of end-to-end delay

Pcam Transmission power of each camera
PB Transmission power of 5G base station

δPROC Processing delay at the edge server

TABLE II: List of parameters relevant to nth video transmission from
the factory floor

Parameter Definition

kn Slot index of the nth video transmission
pi(kn) Position of the ith AGV
vi(kn) Velocity of the ith AGV
ai(kn) Acceleration of the ith AGV
di(kn) Distance traversed by the ith AGV
xk(n) Number of RBs allocated to the kth camera
yi(n) Number of RBs allocated to the ith AGV
yVR(n) Number of RBs allocated to surveillance system
hk(n) Channel gain from kth camera to 5G base station
gi(n) Channel gain from 5G base station to the ith AGV
gVR(n) Channel gain from 5G base station to surveillance system

AGV and the surveillance system is indicated by yi(n) and
yVR(n) respectively.

The channel gains from the 5G base station to the ith AGV
and the surveillance system are denoted by gi(n) and gVR(n)
respectively. The delay in transmission of the nth video feed
from the kth camera is represented by δkCAM (xk(n);hk(n)).
The processing delay on the edge server is denoted by δPROC.
Finally, δiAGV (yi(n); gi(n)) and δVR (yVR(n); gVR(n)) denote
the transmission delay to send the motion control parameters
to ith AGV and VR 360◦ video to the surveillance room from
5G base station. All the parameters pertaining to the nth video
transmission are summarized in Table II.

B. Delay Constraint

We formulate the delay constraint that ensures the timely
delivery of motion control parameters and VR 360◦ video from
the edge server. Latency is a critical quality parameter for VR
applications. An excessive delay can disrupt the immersive VR
experience [11]. According to the existing literature [12], [32],
the end-to-end latency must not exceed 15 ms. On the other
hand, the maximum velocity of the AGVs is in the range of
1-4 meter/second. As a result, the movements of AGVs in a
few milliseconds do not increase the chance of collisions. So,
the latency requirement is more critical for the VR 360◦ video
feed transmission compared to the delivery of motion controls
to AGVs. For a concise mathematical description of the delay
constraint, we need to define some peripheral functions.

• The uplink delay corresponding to the nth video trans-
mission = δUL(n) = maxCk=1 δ

k
CAM (xk(n);hk(n)).
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TABLE III: List of delay functions relevant to nth video transmission
from the factory floor

Parameter Definition

δkCAM (xk(n);hk(n)) Tx. delay from the kth camera to 5G base station
δiAGV (yi(n); gi(n)) Tx. delay from 5G base station to the ith AGV
δVR (yVR(n); gVR(n)) Tx. delay from 5G base station to surveillance

δUL(n) Uplink delay from factory to 5G base station
δDL(n) Downlink delay from 5G base station to factory

• The downlink delay corresponding to the nth video
transmission = δDL(n) = max{δVR (yVR(n); gVR(n)) ,
maxMi=1 δ

i
AGV (yi(n); gi(n))}.

The various delay functions are summarized in Table III. The
end-to-end delay is the sum of the uplink transmission delay,
processing delay (denoted δPROC), and downlink transmission
delay. We denote end-to-end latency by ∆(n) = δUL(n) +
δPROC + δDL(n). The end-to-end delay must be within a
threshold, denoted by θ. Now we can define a recurrence
relation for the sequence {k1, k2, · · · , kN} (defined as the
indices of the time slots when the base station requests the
camera system to provide a video feed in Section IV) as
follows:

k1 = 1, kn+1 = kn +

⌈
∆(n)

TS

⌉
. (1)

C. Safety and Efficiency Objective

In this subsection, our aim is to quantify one of the most
important objectives of a fully automated factory, which is
maintaining safety throughout the production process. To en-
sure safety, we must ensure that the AGVs do not collide with
each other or with the machinery inside the factory. Therefore,
our objective should be to minimize events in which something
enters within the collision avoidance radius (ra) of any AGV.
We can avoid the occurrence of any such event by simply
keeping the AGVs still. However, this will negatively impact
the factory operations. Therefore, we need to define a slightly
different metric that indirectly captures the consequence of
collision events.

The timely delivery of motion controls from the edge server
to the AGVs is necessary for the collision-free motion of
the AGVs. In the absence of proper motion control, an AGV
will move uncontrollably and may collide with another AGV
or other stationary equipment. At that point, the crashed
AGV will not have any further involvement in the production
process until an outside intervention is made. Assuming the
availability of perfect motion controls, the AGVs will be able
to move within the factory without any collisions. So, we
define a new metric, namely efficiency, defined as the total
distance traversed by the AGVs in a time window divided
by the maximum possible distance that the AGVs can cover
during the same time period. If a collision event occurs, the
involved AGVs cease to operate until external intervention
and therefore do not contribute to the total distance covered
by the AGVs, reducing the value of efficiency. So, if we are
able to avoid collision events, it ensures that all AGVs can
move around the factory and keep the production process

running smoothly. As a result, the distance covered by the
AGVs is maximized, and the efficiency factor increases. So, we
can minimize the number of collision events by maximizing
efficiency. In this work, we focus on the real-time allocation of
network resources. We denote the efficiency corresponding to
nth video transmission from the factory floor by η(n). We use
the moving average of window size W to define the efficiency
as

η(n) =
1

W

[
W−1∑
i=1

η(n− i) +

∑M
i=1 di(kn)

vmaxM(kn+1 − kn)TS

]
, (2)

where the first term (summation term) corresponds to the ac-
cumulated efficiency the previous W −1 videos transmissions
before nth video transmission; the numerator of the second
term denotes the total distance covered by M AGVs before
the start of (n+1)th video transmission; and the denominator
conveys the total distance covered by these AGVs in the same
time window at the highest possible speed (denoted by vmax).

V. PLANNING AND OPERATIONAL PHASES

During the planning phase of a 5G connected automated
industrial system, it is necessary to design the network
slice for the different use cases, such as Enhanced Mobile
Broadband (eMBB), massive Machine Type Communication
(mMTC), and Ultra Reliability and Low Latency Communi-
cation (URLLC). The requirement for RBs depends on the
number of AGVs operating on the factory floor, as well as the
number of cameras to be used to monitor the floor. Once the
planning phase is completed and network slices are created,
a real-time resource allocation scheme must be designed to
allocate the RBs to the various components of the Industry
4.0 system. In the following sections, we give a method to
create a network slice for the specific problem described in
Section IV and propose a real-time resource allocation policy
for the operational phase of the system.

A. Planning phase: Estimation of the number of resource
blocks

In this subsection, we describe a statistical method to esti-
mate the number of resource blocks necessary to maintain the
end-to-end delay 99.999% of time, for the URLLC and eMBB
use cases described in Section IV. As mentioned in Section
IV-C, the delay constraints cannot be guaranteed to be satisfied
at all times regardless of the value of NRB. Our first step would
be to find the delay violation probability corresponding to NRB
and a real-time network resource allocation scheme.

For details of channel gain parameters for different wireless
communication streams, refer to Section IV-A. All of the chan-
nels’ gains are thought to be controlled by random variables
that are not related to each other. The uplink delays from
the cameras to the 5G base station and the downlink delays
from the base station to the AGVs and surveillance room are
monotonic functions of their respective channel gains. Various
uplink and downlink delays depend on the channel gains and
the distance from the base station. To estimate NRB that can
maintain 99.999% availability, we consider the situation when
all AGVs are the furthest from the base station. So, we can
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find the probability distributions governing these uplink and
downlink delays if the probability distributions of the channel
gain parameters are known.

The probability distribution followed by the uplink trans-
mission delay of the nth video feed from the kth camera to
the 5G base station is indicated by pkUL(·). The corresponding
cumulative distribution function (cdf) is P k

UL(·). The probabil-
ity distributions that govern the downlink delays from 5G base
station to ith AGV and the surveillance system are represented
by piDL(·) and pVR

DL(·) respectively. The corresponding CDFs
are denoted by P i

DL(·) and PVR
DL (·). Now we can calculate the

probability distributions of the overall uplink and downlink
delays (defined in Section IV-B). The CDFs governing the
uplink and downlink delays are given by

PUL(·) =
C∏

k=1

P k
UL(·),

PDL(·) = PVR
DL (·)×

M∏
i=1

P i
DL(·).

(3)

The corresponding probability distribution functions are pUL(·)
and pDL(·), respectively.

In this work, it is assumed that the processing delay on the
edge server is of constant value for a given number of AGVs.
Let θ be the delay threshold requirement on the factory floor.
The theoretical delay violation probability (denoted by P∆)
can be written as

P∆ = P [∆(n) ≤ θ]

= P [δUL(n) + δDL(n) ≤ θ − δPROC]

=

∫ θ−δPROC

y=0

pUL(y)

(∫ θ−δPROC−y

x=0

pDL(x)dx

)
dy

=

∫ θ−δPROC

y=0

pUL(y)PDL(θ − δPROC − y)dy.

(4)

As discussed in Section II, the delay violation probability (P∆)
should be ≤ 0.001. With access to more RBs, we can reduce
transmission delays by allocating more network resources to
the camera system, AGVs, and surveillance system. Given
the system parameters of a factory floor, we can estimate
a lower bound on the number of RBs (NRB) using this
probabilistic approach. For estimation purpose, we consider
the channel gain parameters (from the 5G base station to
the camera system and the AGVs) to follow an exponential
distribution with mean value λ. Uplink and downlink delays
are determined by the available RBs, the channel conditions,
and distances from the 5G base station. In the planning phase
of the Industry 4.0 system, the average distance between an
AGV and the 5G base station is used to calculate the downlink
delays.

To find out the lower bound of NRB, we fix a range [1, N̂RB].
Round trip delay is a monotonically decreasing function of
NRB. We use binary search in the range [1, N̂RB] to find the
value of NRB that allows the probability of round trip delay
violation to remain below 0.001. Once we fix the value of
NRB, we can assign the RBs to the camera system, the AGVs,
and the maintenance room using a similar method described

in Subroutine 1 in Section VI. Then, we can calculate the
round-trip delay violation probability using Equation (4). If
the chosen range is not enough to get a value of NRB that
keeps the probability of violation of the round trip delay
below 0.001, we double the value of N̂RB and search the new
range. Following this process, we can obtain a lower bound of
NRB. This gives us a good estimate of the network resource
requirements for an industrial setup. Please refer to Section
VII-A for the simulation results.

B. Operational phase: Real-time network resource allocation
framework

At the beginning of each video transmission from the
cameras on the factory floor, the channel conditions inside
the factory are estimated by the 5G base station, and the RBs
are allocated to the cameras, AGVs, and surveillance system.
The resource allocation scheme must satisfy two primary
objectives of our system. Our first objective is to keep the end-
to-end delay associated with nth video transmission (∆(n))
within the required threshold θ. This will ensure a smooth
VR experience in the surveillance room and convey motion
controls to the AGVs in time to prevent any collisions. The
second objective of our problem is to make the factory floor
as efficient as possible. The combined optimization problem
for the first N video transmissions from the factory floor can
be written as

min α1

N∑
n=1

1∆(n)>θ + α2 (1− η(N))

⇔ α1

N∑
n=1

1∆(n)>θ + α2

(
1− 1

N

N∑
n=1

∑M
i=1 di(kn)

vmaxM(kn+1 − kn)TS

)

s.t.
C∑

k=1

xk(n) ≤ NRB ∀ n ∈ [0, N ]

yVR(n) +

M∑
i=1

yi(n) ≤ NRB ∀ n ∈ [0, N ],

(5)

where α1, α2 > 0 are parameters of the scalarization and
1∆(n)>θ is an indicator function.

Clearly, this optimization problem depends on the sequence
of decisions made by the controller on the edge server. As
we do not participate in the design of the motion controller,
the problem cannot be solved using existing optimization
methods. Instead of solving the problem over a horizon (N
number of transmissions), we tackle a myopic version of the
problem, which is tractable, and its solution provides us with a
real-time resource allocation policy. The optimization problem
corresponding to nth video transmission can be written as

min α11∆(n)>θ + α2 (1− η(n))

s.t.
C∑

k=1

xk(n) ≤ NRB

yVR(n) +

M∑
i=1

yi(n) ≤ NRB.

(6)
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The first term of the optimization problem is an indicator
function. To minimize it, we need to satisfy the inequal-
ity constraint pertaining to the indicator function. In the
second term of the optimization problem, the numerator of
the efficiency term depends on the distance covered by the
AGVs. A particular AGV continues to move with its current
velocity until it receives new motion controls or faces an
obstruction (whichever occurs first). The denominator, on the
other hand, decreases as the end-to-end delay decreases. By
decreasing ∆(n), we effectively reduce the second term of
our optimization problem. Therefore, we need to minimize
the end-to-end delay to minimize (6). The end-to-end delay
has been defined in Section IV-B as the sum of the uplink,
processing, and downlink delays. The uplink and downlink
delay are defined as the maximum of individual uplink and
downlink delays, respectively. So, our objective function is a
non-convex integer nonlinear programming.

VI. NETWORK RESOURCE ALLOCATION POLICY IN
REAL-TIME

In this section, we develop a real-time network resource
allocation policy that solves the myopic version of the op-
timization problem described in Section V-B. We need to
approximate the delay functions described in Section IV-A
using the Shannon-Hartley theorem [33] to obtain an explicit
expression for (6). We can write down the approximate delay
functions [33], [34] as:

δkCAM (xk(n);hk(n)) ≈ scamera

/[
12∆fxk(n)

log2

(
1 +

Pcamhk(n)(r
k
cam)

−α

12∆fxk(n)N0

)]
,

(7a)

δiAGV (yi(n); gi(n)) ≈ scontrol

/[
12∆fyi(n)

log2

(
1 +

PBgi(n)(r
i
agv(n))

−α

12∆fyi(n)N0

)]
,

(7b)

δVR (yVR(n); gVR(n)) ≈ sVR

/[
12∆fyVR(n)

log2

(
1 +

PBgVR(n)r
−α
VR

12∆fyVR(n)N0

)]
.

(7c)

The subcarrier spacing of each RB is denoted by ∆f . The
spectral density of the noise inside the factory floor is N0.
The transmission power levels of the cameras and the 5G
base station are indicated by Pcam and PB, respectively. The
path-loss factor inside the factory is α. The distance from
the surveillance room and the kth camera to the base station
is represented by rVR and rkcam. The distance of the ith

AGV from the base station when that AGV receives motion
controls related to the nth video transmission is denoted by
riagv(n). The size of the messages generated on the cameras
is scamera. The size of the messages retrieved by the AGVs
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Fig. 3: Uplink delay vs the number of available RBs for
different coding schemes

and the surveillance system is scontrol and sVR respectively. In
Section II, we have mentioned that a 5G base station is placed
near the factory premises to consistently provide an efficient
wireless communication medium. According to [28], industrial
automation will require local area networks, deployed in
factory premises to consistently meet URLLC performance
targets. In Fig. 3, we compare the uplink delay (camera system
to the 5G base station) corresponding to different modulation
schemes, with the approximate delay curve (obtained from the
Shannon-Hartley theorem [33], [34]). For simulation purposes,
the number of AGVs and cameras is taken to be 16 and 4
respectively. We use the Channel Quality Indicator parameter
provided by SimuLTE [35], to use the desired modulation
schemes for the industrial system implemented in OMNet++.
From Fig. 3, we can see that with an improved modulation
scheme, we gradually approach the approximate delay curve
(the minimum delay that can be achieved by the Shannon-
Hartley theorem). 256-QAM very nearly achieves the optimal
delay and is within 1% of the limit. So, under the assumption
that the industrial system uses a private 5G network free from
external interference, our approximations work quite well. In
the next two subsections, we give the key insight behind our
resource allocation policy and the corresponding algorithm.

A. Network resource allocation policy

As discussed in Section V-B, we need to minimize
the end-to-end latency to minimize both terms of the
real-time optimization problem. End-to-end delay con-
sists of uplink, processing, and downlink delays. In Sec-
tion IV-B, uplink and downlink delays are defined as
δUL(n) = maxCk=1 δ

k
CAM (xk(n);hk(n)) and δDL(n) =

max
{
δVR (yVR(n); gVR(n)) ,maxMi=1 δ

i
AGV (yi(n); gi(n))

}
, re-

spectively. Our non-convex integer nonlinear problem is effec-
tively a combinatorial search problem. We need to prove the
following proposition before describing our approach.

Proposition 1. Let x1, . . . , xn be n positive real numbers
such that x1 + . . . + xn ≤ N . Consider n continuous and
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differentiable decreasing functions fi(xi) ∀ i ∈ [1, n]. If the
minimum value of maxni=1 fi(xi) is v at (x′

1, . . . , x
′
n), then

x′
1 + . . .+ x′

n = N and f1(x
′
1) = . . . = fn(x

′
n) = v.

Proof: Let s′ =
∑n

i=1 x
′
i. If s′ < N , then we can define

a new set of real numbers x′′
i = x′

i + (N − s′)/n and use
them as arguments for decreasing functions. Therefore, this
will lower the value of maxni=1 fi(xi) which contradicts the
assumption that the minima occurs for (x′

1, . . . , x
′
n).

Assume f1(x
′
1) = . . . = fn(x

′
n) = v is not true. Let the

two largest unequal values (in descending order) be fi(x
′
i) and

fj(x
′
j). There exists a δ < x′

j such that fi(x′
i) > fi(x

′
i+ δ) >

fj(x
′
j − δ) > fj(x

′
j). Once again, we can decrease the value

of maxni=1 fi(xi). This contradicts the assumption. We can
continue choosing a sequence of δ until all values become
identical.

Subroutine 1: Network resource allocation for end-to-
end delay threshold θ̂

1 θ0 = θ̂− δPROC, ϕ = 0.5, ∆UL = θ0(1−ϕ), ∆DL = θ0ϕ
2 for it← 1 to iter1 do
3 for k ← 1 to C do
4 xk(n) := The lowest integer value that makes

the approx. delay function (7a) less than ∆UL

5 for i← 1 to M do
6 yi(n) := The lowest integer value that makes

the approx. delay function (7b) less than ∆DL

7 yVR(n) := The lowest integer value that makes the
approx. delay function (7c) less than ∆DL

8 Check RB constraint for both uplink and downlink
9 if Constraint violated on both sides then

10 Delay violation cannot be avoided.
11 Return Null
12 else if Constraint violated on one side then
13 Use Binary Search to tune ϕ.
14 Update ∆DL and ∆UL
15 else
16 Return

yVR(n), {y1(n), · · · , yM (n)}, {x1(n), · · · , xC(n)}
17 Return

yVR(n), {y1(n), · · · , yM (n)}, {x1(n), · · · , xC(n)}

The approximate delay functions are continuous and differ-
entiable decreasing functions of the RBs. Using the Proposi-
tion 1, our objective should be to allocate RBs among cameras
in such a way that their respective delays to reach the 5G base
station are as close to the same as possible. Similarly, the VR
video feed should reach the surveillance system around the
same time the AGVs receive their motion controls. In the next
subsection, we give a detailed explanation of our RB allocation
method.

B. Algorithm for network resource allocation

Given an end-to-end delay threshold (denoted θ̂), Algorithm
1 is used to find an RB allocation that satisfies the constraint.
The total allowable transmission delay (denoted by θ0) is

Algorithm 1: Network resource allocation correspond-
ing to nth video transmission

1 Input: C, M , θ, NRB, ∆f , δPROC, Pcam, PB, scamera, α,
scontrol, sVR, Channel gains, iter

2 θ̂low = δPROC + ϵ, θ̂high = θ

3 Keep doubling θ̂high till we find a RB allocation using
Subroutine 1.

4 θ̂ = (θ̂high + θ̂low)/2
5 for it← 1 to iter2 do
6 Use Binary Search to adjust θ̂ within the range

[θ̂low, θ̂high] and use Subroutine 1 to find RB
allocation.

7 Return the final RB allocation

calculated by subtracting the processing delay from the end-
to-end delay threshold θ̂. We allocate a portion (denoted ϕ)
of the allowable transmission delay for uplink transmissions
and the rest for downlink transmissions. Initially, ϕ is set to
0.5. During iterations of the algorithm, the ϕ value is adjusted
to increase/decrease transmission time on one side (uplink or
downlink) as necessary due to the constraint on the availability
of the RBs. For each iteration of the algorithm, we try to assign
RBs in such a way that the uplink and downlink communica-
tion delays match their respective target value. Note that all
transmission delays have the form a1/(x log(1 +

a2

x )) = ∆t,
where x corresponds to the number of RBs for a particular
transmission. The solution to this equation is given by

x = − a1a2

a1 + a2∆tProductLog

(
−

a1 exp
(
− a1

a2∆t

)
a2∆t

) , (8)

where the ProductLog(z) function [36], also known as the
Lambert W function, gives the solution for wew = z.

Algorithm 1 is used to minimize our original objective,
i.e., to minimize the end-to-end latency. Given the end-to-
end delay requirement of our system (θ), we try to find an
RB allocation that satisfies the constraint, using Subroutine
1. If no such allocation is possible, we again search for an
RB allocation using a delay threshold of 2θ. We continue
to double until we can find an RB allocation. Once we are
successful, we find the upper bound of the minimum end-to-
end delay. Then we use the binary search method to adjust θ̂
within the range and pass it on to the Subroutine 1 to find the
corresponding RB allocation. As we go through the iterations
of Algorithm 1, we gradually approach the minimum possible
end-to-end delay and find the corresponding RB allocation.
The network resource allocation is done at the 5G base station,
which is virtually co-located with the edge server [28] as the
edge server and the 5G base station have a wired connection
between them. So, the network resource allocation algorithm
can run on the edge server. The following data are needed to
run the algorithm.

• The channel conditions inside the factory floor: In 5G
NR, a User Equipment (UE) reports the Channel State
Information (CSI) to the 5G base station. The periodicity



10

0 10 20 30 40 50 60 70

Number of AGVs (M)

0

50

100

150

200

250
N

R
B
 r

e
q

u
ir
e

d
 t

o
 a

c
h

ie
v
e

 9
9

.9
9

9
%

 a
v
a

ila
b

ili
ty

C = 1
C = 2
C = 3
C = 4
C = 5
C = 6

Number of cameras (C)

(a) Required NRB vs. Number of AGVs

0 10 20 30 40 50 60

Number of AGVs (M)

50

100

150

200

250

N
R

B
 r

e
q
u
ir
e
d
 t
o
 a

c
h
ie

v
e
 9

9
.9

9
9
%

 a
v
a
ila

b
ili

ty

Estimated lower bound (C = 1)
Actual requirement (C = 1)
Estimated lower bound (C = 4)
Actual requirement (C = 4)
Estimated lower bound (C = 6)
Actual requirement (C = 6)

Number of cameras (C)

(b) Estimated NRB vs Number of AGVs

0 50 100 150 200 250

Number of AGVs (M)

0

50

100

150

200

250

N
R

B
 r

e
q
u
ir
e
d
 t
o
 a

c
h
ie

v
e
 9

9
.9

9
9
%

 a
v
a
ila

b
ili

ty With VR (No. of cameras = 6)
With VR (No. of cameras = 4)
Without VR

(c) NRB vs M with or without VR
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of the CSI report flow can be of three types - periodic,
aperiodic, and semipersistant [37]. In our simulation of
the industrial system, we have used a periodic CSI report
with a periodicity of 50 ms. Control packets for CSI
reporting are sent via a narrowband channel. Channel
conditions inside a factory floor do not change very
frequently [38], so the periodicity of the CSI reporting
might be a bit larger. We have added the details about
CSI reporting in the revised version of the manuscript.

• The positions of the AGVs: Based on the most recent
video feed from the camera system on the factory floor
and the motion control decisions taken on the edge server,
the positions of the AGVs are readily available at the edge
server.

The number of iterations used in Subroutine 1 and Algorithm
1 is indicated by iter1 and iter2 respectively. For each call
to Subroutine 1, the binary search is executed iter1 times.
Therefore, the maximum number of computations for each call
to Subroutine 1 is of order O(iter1 · (C +M)). In Algorithm
1, the binary search is performed most iter2 times, and at
each step, Subroutine 1 is called. The constant terms that are
not related to the design of the industrial system (such as -
iter1 and iter2), can be disregarded in the time complexity
analysis. So, the overall worst-case complexity of Algorithm
1 is O(C +M).

VII. SIMULATION RESULTS

The simulation results section is categorized into two sub-
sections. In the first subsection, we demonstrate the scalability
issues that may arise from the number of cameras used on the
factory floor to create the VR 360◦ video feed for remote
surveillance of the automation process, and the number of
AGVs involved in the manufacturing process. In the second
subsection, we compare the performance of the resource
allocation scheme developed in Sections VI-A and VI-B with
the existing method. The values of the parameters used in our
simulation set-up used are given in Table IV. We simulate
the different communication streams and the movement of
the AGVs on the factory floor using OMNet++ version 6.0
integrated with SimuLTE that provides a framework mimick-
ing 5G network. The machine used for the simulations is a

MacBook Pro with 3.1 GHz Dual-Core Intel Core i5 processor,
Intel Iris Plus Graphics 650 1536 MB, and 8 GB RAM.

TABLE IV: Simulation setup

Parameter Value
Area of factory floor 500m×500m

Surveillance camera resolution 720× 480 at 30 fps [39]
Data generated by each camera 25 Mbps

Size of the motion control messages sent
to each AGV 500 bytes [3]

Subcarrier spacing (∆f ) of the RBs 15 kHz

Dimension of each AGV 750mm(L)×550mm(W)
×200mm(H) [40]

Maximum speed of each AGV 4 m/s
Parameters of the scalarization (Sec. V-B) 0.5 each
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A. Scalability of Industry 4.0 system

Network resource requirement of the Industry 4.0 system
considered in this work is heavily dependent on the number of
cameras used to monitor the factory floor. Scalability in terms
of bandwidth requirement is a crucial issue for the factories of
the future. Another critical scalability problem arises from the
number of AGVs operating on a factory floor, which affects
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the safety condition of the floor. The following results provide
an understanding of the scalability of our model.

1) Effect of number of cameras used to create VR 360◦

video: For a smooth VR 360◦ video experience, VR develop-
ers and industries concur that application end-to-end latency
should be less than 20 ms in order for the Motion-To-Photon
latency (MTP) to be indiscernible [11], [12], [41]. In our work,
the end-to-end latency threshold (θ) is kept at 15 ms. The
processing delay to create VR 360◦ video by stitching video
feed from the cameras on the factory floor depends on both
the quality of the video feed from cameras, the quality of 360◦

video, and the number of cameras. The video-stitching method
described in [42] requires on average 13 ms to stitch videos
from 6 cameras. The amount of data generated by the cameras
on the factory floor is linearly dependent on the number of
cameras, and the corresponding delay follows a nearly linear
curve [43].

In our simulation, as the number of cameras increases,
the time it takes to process video stitching and blending
increases. Because the end-to-end delay must be met, the
total transmission time must be shortened. With increasing
number of cameras, the amount of data to be transmitted
to the 5G base station increases. The increased amount of

data, along with less time for transmission, calls for increased
demand for resource blocks. For a fixed number of AGVs,
Fig. 4a showes how the demand for the total number of RBs
(NRB) gradually increases as more cameras are used to create
the VR 360◦ video. We use the resource allocation scheme
described in Algorithm 1 to allocate RBs to cameras, AGVs,
and the surveillance system. It is evident from Fig. 4a that
NRB increases as we continue to add more AGVs to the factory
floor. We need to add more RBs to accommodate more motion
control inputs that need to be delivered to the additional AGVs
in order to maintain the end-to-end delay threshold.

In Fig. 4b, we compare the estimated number of RBs,
calculated using the method described in Section V, with the
actual number of RBs required to achieve 99.999% availabil-
ity. Although the lower bound is not very strict when the
number of AGVs and cameras is higher, it still provides a
good understanding of the scalability of a factory floor. In
Fig. 4c, we show that the scalability in terms of the number
of AGVs nearly doubles when the VR maintenance system is
excluded from the Industry 4.0 system. In the absence of a VR
system, the limitation on scalability arises from the physical
architecture of 5G NR.
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Fig. 8: Performance of our resource allocation policy

2) Effect of number of AGVs on efficiency and cost of the
automation process: In this sub-subsection, we show how the
value of the objective function (referred to here as the cost of
the Industry 4.0 system), defined in Section V-B, changes as
we increase the number of AGVs on the factory floor. Both
scalarization parameters of the objective function (Equation
(5)) are set to 0.5. The first term of the objective function
is the deficiency (defined as 1−efficiency) of the system.
As described in Section IV-C, if efficiency is reduced, the
chance of a collision event on the factory floor increases.
The second term of the objective function is related to the
number of round-trip delay violation events. These delay
violations negatively affect the VR video feed delivery to
the maintenance room, as well as motion control delivery to
AGVs. For simulation purpose, the number of cameras on the
factory floor is taken to be 4.

The threshold of delay violation probability for our problem
is less than 0.001, as discussed in Section II. Using the method
described in Section V, we estimate the lower bound for the
number of total resource blocks (NRB) necessary to achieve
this criterion. With knowledge of the lower bound of NRB, we
provide a sufficient number of RBs to ensure that the round-
trip delay violation is kept under 0.001. As a result, the second
term of the objective function (see Section V-B) contributes
very little to the overall cost.

As described in Section IV-C, the efficiency of the automa-
tion process is defined as the ratio between the total distance
covered by the AGVs dictated by the motion controller on
the edge server and the distance covered by the AGVs at
maximum velocity for the duration of the automation process.
The locations of the starting and end points of the AGV routes
contribute to the fluidity of the automation process. For the
reproducibility of our simulation, we generate the starting and
end points of the AGVs using a random seed in OMNet++
once and keep the locations fixed throughout the simulation
process. When there is a single AGV on the factory floor,

the efficiency is very close to 1 (Fig. 5). As we increase the
number of AGVs, the efficiency drops sharply to about 65
AGVs, and then the rate of decrease in efficiency slows (Fig.
5). An increase in the number of AGVs increases the number
of interactions among the AGVs. As a result, the controller
must slow down the AGVs (and, on occasion, completely stop
the AGVs) to avoid collisions. Therefore, efficiency decreases
and is expected to reach zero when there are so many AGVs
that the factory floor comes to a standstill. So, with an increase
in the number of AGVs, the efficiency approaches 0, i.e.
deficiency approaches 1, and the overall cost approaches just
very slightly above 0.5. Due to the finite area of the factory
floor in our simulation setup, arbitrarily increasing the number
of AGVs makes little sense, as most AGVs are stuck during
the automation process. So, the maximum number of AGVs
in our simulation is 300. Therefore, the theoretical upper limit
of the cost (slightly greater than 0.5) is not visible in Fig. 5.

B. Performance of our resource allocation policy

In this subsection, we demonstrate the performance of our
resource allocation scheme, as well as the efficiency of our
algorithm to implement this policy. Finally, we show the trade-
off between processing time and accuracy of our algorithm.

1) Comparison of different network resource allocation
policy: In this sub-subsection, we compare how well or worse
our resource allocation policy (refer to Section VI-A) holds
compared to policies in the existing literature. Especially,
we compare our resource allocation policy with the policies
described in [25], [26], and [27]. In the rest of this subsection,
we denote our policy as Policy 1 and the policies described
in [25], [26] and [27] as Policy 2, Policy 3, and Policy 4,
respectively.

• Policy 2: In [25], the authors proposed a centralized
resource allocation policy where the network resources
are distributed among the industrial devices (sensors,
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actuators, etc.) such as to maximize the sum throughput.
Although a heuristic approach is given to find the solution
to this optimization problem in [25], it is not clear
whether it gives the optimal solution.

• Policy 3: In [26], a fraction (denoted by α) of available
RBs are cyclically allocated to URLLC applications. The
rest of the RBs are allocated to the eMBB applications,
once again in a round-robin fashion. In our system, during
downlink communications, we can classify the transmis-
sion to the surveillance system as URLLC coupled with
the eMBB application, whereas the transmissions to the
AGVs can be deemed as URLLC applications.

• Policy 4: The authors of [27] proposed a greedy allocation
strategy for the allocation of RB to active industrial
devices. The greedy strategy is based on a metric that
depends on three key parameters: (i) the amount of data
in the queues of the devices, (ii) the data generation rate
at the devices, and (iii) the previous RB allocation history.

In Fig. 6, we consider 8 AGVs on the factory floor. We
implement the aforementioned policies in OMNet++. For each
policy, we use 10 different random number generating seeds
to simulate Industry 4.0 under different channel conditions
and run each iteration for 1 hour. We track the number of
delay violation events for each iteration and finally calculate
the delay violation probability for different policies. The first
term of equation (5) can be computed using equation (2). The
window size for the calculation of efficiency is taken to be 100.
Finally, we can calculate the cost function using Equation (5).
Throughout the simulation process, the number of cameras is
set to be 4.

From Fig. 6a it is clear that we can reach the maximum
possible efficiency if enough RBs are available on the factory
floor. As mentioned in. Section II, we control the data injection
process on the factory floor. As a result, our resource allocation
policy requires far fewer RBs to achieve maximum efficiency.
For a fixed number of RBs available on the factory floor, a
fixed proportion to the surveillance system is not optimal.
It may cause under-utilization of RBs by allocating more
than required RBs to either the surveillance system or the
AGVs. For similar reasons, we can see that our policy achieves
the delay violation requirement with fewer RBs compared to
Policy 2 and 3 (Fig. 6b). As a result, we can also achieve
the minimum possible overall cost using fewer RBs (Fig. 6c).
Similarly, for 16 AGVs on the factory floor, our resource
allocation policy performs better (see Fig. 7).

2) Performance comparison of different algorithms for
implementing our resource allocation policy: In this sub-
subsection, we compare the performance of different algo-
rithms to solve the network resource allocation problem in
Section VI. We compare our algorithm (described in Sec-
tion VI-B) with two existing algorithms to solve a global
optimization problem: (1) genetic algorithm and (2) surrogate
optimization algorithm. For the simulation setup, we keep the
number of AGVs and the number of cameras to be 8 and 4
respectively. In Fig. 8a, we plot the processing time (on a loga-
rithmic scale) needed to solve the network resource allocation
problem using different algorithms. The approximate delay
functions (details in Section VI) are monotonically decreasing

functions of the number of RBs associated with them. If the
number of RBs can take real values (instead of strict integers),
the approximate delay functions follow the Proposition 1. Our
algorithm is designed based on the approximate delay func-
tions and Proposition 1, and can efficiently find the solution
to the network resource allocation problem that minimizes
our objective described in Equation (6). As the number of
AGVs increases, both the Genetic Algorithm and Surrogate
Optimization Algorithm do not converge to a solution even
after an hour. Therefore, we truncated the curves in Fig. 8a. A
generic global optimizer is much slower and cannot be used
to assign RBs in real time.

3) Accuracy of our algorithm: In Fig. 8b, we show how the
average end-to-end delay achieved by our resource allocation
policy is affected as we vary the number of iterations for
the binary searches used in Subroutine 1 and Algorithm 1.
We consider 16 AGVs on the factory floor for this particular
scenario. The number of cameras is taken to be 4. To obtain
the baseline for comparing the accuracy of our policy (shown
in dotted line in Fig. 8b), we solve the myopic version of our
optimization problem (Equation (6)) while allocating network
resources in the OMNet++ simulation. It is evident form Fig.
8b, with the increase in the number of iterations for both
binary searches, the absolute error of the average end-to-end
delay decreases. Empirically, we get one more decimal digit
of accuracy as we increase the number of iterations to 50 for
both binary searches.

VIII. CONCLUSIONS AND FUTURE WORKS

In this work, we proposed a network resource allocation
algorithm for a futuristic factory equipped with stationary
robots, AGVs, and VR surveillance. First, we model a fully
automated factory floor assisted by a camera-based monitoring
system and VR surveillance. The video feed from the camera
system is sent to the edge server depending on the channel and
the safety conditions on the factory floor. Then, we studied
two key QoS parameters: end-to-end delay and safety. We
presented a statistical method to estimate the number of RBs
necessary to satisfy QoS metrics 99.999% over time. Our
resource allocation policy achieves the QoS objectives by em-
ploying fewer RBs compared to the existing network resource
allocation policy for Industry 4.0 systems [26]. Our algorithm
solves the resource allocation problem with linear complexity
in the total number of AGVs and cameras. Our algorithm also
performs better than well-known global optimizers, such as
genetic and surrogate optimization algorithms. Our network
resource allocation scheme based on a controlled data injection
process to the 5G network uses 25% to 30% fewer network
resources to achieve the desired QoS, compared to the existing
resource allocation schemes.

In our future work, our aim is to analyze an automated
industrial system where human workers can intervene remotely
using an augmented reality system. The network resource
allocation policy should be designed to handle the stochastic
nature of events of human interaction.
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