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Abstract—Atrial fibrillation (AF), being the most prevalent
arrhythmia around the world, is a significant health concern
considering an aging population and increasing prevalence of
its risk factors such as hypertension and obesity. It is estimated
that AF increases the risk of stroke by about five times and
the risk of its recurrence by two-fold. AF remains undetected
in up to 30% of cases due to its asymptomatic and paroxysmal
nature, and lack of routine screening. We present a novel AF risk
stratification framework using brain magnetic resonance imaging
(MRI) to identify the underlying AF in post-stroke patients and
assist in preventing secondary ones. By analyzing the infarct
patterns of these patients using a multi-task learning framework
(adopting segmentation and classification losses simultaneously),
our proposed model achieves an area under the receiver operating
characteristic (AUROC) of 87.48 ± 4.88, demonstrating its
capability in discriminating AF patients from others. Since MRI
is already an established modality in the stroke treatment and
diagnosis framework, this innovative solution incurs no additional
costs or tests for the patient. It can effectively select patients
at elevated risk for extensive cardiac investigation and definite
diagnosis of AF.

I. INTRODUCTION

Atrial fibrillation (AF) is an irregular and often rapid heart
rhythm that can lead to blood clots in the heart. A blood clot
detached from the heart can travel to the brain and result
in an ischemic stroke. AF is a significant risk factor for
stroke, responsible for up to one-third of all cases [14]. AF,
characterized by a chaotic and irregular heart rhythm, increases
stroke risk up to five times [22]. If left untreated, AF can raise
the risk of recurrent strokes by two times [21], making early
diagnosis and management essential. Detecting AF soon after
a stroke is vital, as timely administration of anticoagulation
therapy can significantly reduce the risk of subsequent strokes
by helping prevent the formation of blood clots. However, up
to 30% of AF cases remain undetected, primarily due to its
intermittent and often asymptomatic nature. Many individuals
with AF experience sporadic episodes that may go unnoticed
during routine or even prolonged monitoring periods. This
intermittent nature complicates detection, as traditional diag-
nostic methods like electrocardiograms (ECGs) or Holter mon-
itors may fail to capture these transient episodes. Additionally,
AF can appear with subtle or no symptoms, further delaying

diagnosis. The lack of observable symptoms also makes it
challenging for patients to recognize the need for medical
evaluation and for healthcare providers to initiate timely diag-
nostic procedures. Furthermore, the diagnostic tools available
for AF detection, such as prolonged ECG monitoring devices
and implantable cardiac monitors, can be costly, invasive, and
require significant patient compliance. These factors contribute
to the challenges in achieving widespread and efficient AF
screening, especially in populations with limited access to
healthcare resources. These challenges underscore the need
for an innovative, cost-effective approach to improve AF de-
tection and management. Due to the impracticality of extensive
cardiac monitoring for all post-stroke patients, comprehensive
risk assessment is critical to select the patients at high risk for
further investigation.

Recently, smartphones and wearable devices with heart rate
sensors have enabled the monitoring of heart rhythms outside
traditional clinical settings [31]. These devices streamline AF
detection through continuous and convenient monitoring but
face challenges, including usability barriers for older adults,
high costs, and integration issues with clinical workflows. On
the other hand, brain imaging is crucial for stroke diagnosis
and management, with various modalities available in stroke
centers. Computed tomography (CT) scans are typically the
first choice in acute stroke settings due to their rapid availabil-
ity and ability to quickly differentiate between ischemic and
hemorrhagic strokes. However, magnetic resonance imaging
(MRI)—particularly diffusion-weighted imaging (DWI)—has
also become routine soon after a stroke. Despite its longer
scanning duration, it is essential in the acute phase of stroke
as it offers highly detailed images of brain tissue with superior
sensitivity and specificity. MRI can detect small or unusual
lesions and differentiate between ischemic and hemorrhagic
strokes, which is vital for treatment planning. While wearable
technology has its benefits, routinely performed MRIs can also
be leveraged to diagnose AF soon after a stroke. Our proposed
deep learning solution utilizes existing MRIs to detect under-
lying AF, offering an effective and cost-efficient method that
integrates seamlessly into current stroke diagnosis procedures
while requiring no additional expenses or examinations for the
patient.

Research into AF patterns in brain MRI using machine
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learning is limited. Previous works have analyzed stroke
etiology, infarct topography, and volume in cardioembolic
strokes, focusing on AF strokes [24]. Studies such as [19]
have examined the association of AF with specific white
matter hyperintensity patterns in embolic stroke patients. In
contrast, [9] highlighted the burden of silent brain lesions
in AF patients, suggesting the utility of MRI screening. The
work in [15] explored brain MRI for personalized AF therapy,
and [11] integrated MRI and blood markers for stroke risk
insights. Further, [6] assessed the impact of including silent
brain infarcts from MRI in the CHA2DS2-VASc score for
stroke risk management in AF patients.

Despite advancements, distinguishing AF-related strokes
solely from brain images remains a clinical challenge due to
limited knowledge of AF-associated infarct patterns. Further-
more, the limited works focus primarily on explorative analysis
without exploiting the benefits of deep learning paradigms to
develop high-performing automated workflows to detect the
presence of AF. We suggest that deep learning (DL) models,
which excel in automatic feature extraction, can enable the
identification of AF through stroke imaging—a task previously
not possible. DL models are particularly suitable for medical
imaging due to established digital workflows and standards
in radiology image storage. To achieve AF identification,
we propose a multi-task learning approach by integrating
segmentation and classification of brain MRI images. By si-
multaneously learning to delineate regions of interest (infarcts)
and classify these images, our method aims to enhance both
accuracy and interpretability in AF risk assessment. To the
best of our knowledge, our proposed approach is the first such
technique designed for early detection of AF from brain MRI
scans. The key contributions of this work include:

• Introducing an innovative approach to integrate AF diag-
nosis into routine stroke imaging protocols, which can aid
in more accurate treatment and management strategies.

• Developing a novel deep learning framework to differen-
tiate AF from other stroke etiologies in post-stroke brain
MRI.

• Employing a multi-task learning approach that combines
segmentation and classification tasks, improving both
model performance and interpretability.

II. RELATED WORKS

DL algorithms have been widely adopted across various
applications in stroke imaging, including diagnosis, detec-
tion, risk prediction, prognosis, treatment recommendation,
medication management, and patient monitoring [13], [7],
[23], [25]. Some studies specifically focus on stroke MRI
imaging, addressing tasks such as time since stroke onset
(TSS) classification [16], prediction of final infarct region and
tissue outcomes [27], clinical outcomes prediction [12], [10],
and segmentation and detection of abnormalities like infarcts
[29], [18].

Despite the rapid growth of this field, to the best of our
knowledge, only one concurrent study in the literature has
explored a similar approach to ours. It is important to note

that our research was conducted independently and was not
influenced by this work, as it was not published during the
initial stages of our investigation. Zhang et al. employed
a convolutional neural network (CNN) to extract features
from brain MRI, which were subsequently combined with
radiomic features from segmented images to develop and
validate a classification algorithm [30]. Their model achieved
an area under the receiver operating characteristic curve (AUC-
ROC) of 79.9%, showcasing the potential of utilizing brain
MRI for detecting underlying AF. However, details regarding
the control group of the dataset, network architecture, and
specifics of the radiomic features extracted were not provided
in their study. Moreover, the absence of comprehensive ex-
periments and discussion limits the assessment of its distinct
contributions.

III. METHODOLOGY

A. Neuroimaging for AF Screening

DWI-MRI is routinely performed on many stroke patients in
stroke centers. As a result, an automated MRI-based risk strat-
ification framework could be pivotal for the early identification
of AF patients who would benefit most from prolonged cardiac
monitoring. By utilizing a deep learning model to analyze
brain MRI images, the likelihood of AF can be estimated
based on infarct patterns. This estimation then serves as a risk
stratification tool, identifying high-risk patients who should
undergo extensive cardiac monitoring to definitively diagnose
AF. To develop this framework, we designed a model that
leverages a multi-task approach, combining classification and
segmentation tasks. This method ensures that the classification
network specifically targets and analyzes the features of the
infarct regions.

B. Dataset

To evaluate the proposed approach for AF identification, a
dataset consisting of 235 acute ischemic stroke (AIS) patients
was retrospectively acquired. Ethics approval was obtained
before the commencement of the project from the Royal
Melbourne Hospital Ethics Committee (QA 2013.072). For
each patient, the data includes a 3D brain DWI-MRI image, a
corresponding class label for the AF or control group, and a
segmentation mask highlighting the infarct regions within the
brain. The MRI images were acquired at patient admission dur-
ing the acute phase of the stroke. The imaging was performed
using various scanners from Siemens Aera, Siemens Prisma
Fit, Siemens Skyra, Siemens Magnetom Essenza, and Philips
Ingenia. The dataset demographics and imaging parameters are
illustrated in Table I. The annotation process for this dataset
involves two parts of class labeling and segmentation masks
for the infarct regions, described in the following:

To identify the underlying cause of stroke based on its
etiology, different systems have been developed including
the Causative Classification System (CCS) [4], Trial of
Org10172 in Acute Stroke Treatment (TOAST) [1], and
ASCO (atherosclerosis, small-vessel disease, cardiac source,
and other cause) [2]. These systems provide frameworks for



TABLE I
OVERVIEW OF DATASET DEMOGRAPHICS AND IMAGING PARAMETERS,
INCLUDING PATIENT CHARACTERISTICS, IMAGING PROTOCOLS, AND

PARAMETERS

Number of patients 235
AF-related strokes 138 (58.7%)

Female 83 (35.3%)
Age (mean±std) 71.1 ± 14.2

Magnetic field strength 1.5 or 3 Tesla
Repetition time 4100-7920 ms

Echo time 55-104 ms
Flip angle 0-180 degrees
b-values 0 or 1,000 sec/mm2

Slice thickness 0.256-7.474 mm
Slice spacing 2-7.5 mm
Pixel spacing 0.548-2 mm

categorizing strokes based on underlying causes, aiding in
diagnosis and treatment planning. Both TOAST and CCS
assess clinical features, imaging findings, and other diagnostic
criteria to categorize strokes into specific etiological groups.
These categories include large artery atherosclerosis (LAA),
cardioembolism (CE), small artery occlusion (SAO), stroke
of other determined cause (OC), and stroke of undetermined
cause (UND). Among these systems, CCS offers a more
precise categorization of stroke causes, with more significant
inter-category variability than intra-category variability. CCS
reassigns 20-40% of cases from the undetermined category in
other systems to specific subtypes, providing enhanced dis-
crimination for clinical, imaging, and prognostic characteris-
tics. The unknown category is markedly smaller in CCS (33%)
compared to TOAST (53%) and ASCO (42%), highlighting its
superior accuracy in categorizing stroke etiologies [3].

In this study, two expert neurologists utilized (CCS) to
determine whether the underlying stroke etiology is AF, a
significant subgroup of cardioembolic (CE) strokes. Patients
are categorized into two groups: (1) strokes associated with
AF and (2) strokes caused by LAA. AF-related strokes are
identified through clinical reports or visual analysis of a 12-
lead ECG, excluding newly diagnosed AF within 30 days
post-cardiac surgery and strokes resulting from other car-
dioembolic sources. In contrast, LAA-related strokes involve
infarctions associated with significant stenosis of the parent
artery, with other potential cardioembolic sources reasonably
excluded based on CCS criteria. Furthermore, the neurologists
utilized the ITK-SNAP software [28] to annotate the DWI-
MRI images, generating segmentation ground truth masks for
this study.

C. Network Architecture

The proposed model, illustrated in Figure 1, integrates a pre-
trained ResNet-18 with a custom decoder and a classification
head, tailored for automated stroke etiology classification in
brain MRI scans. The details of these components are as
follows:

D. Encoder (Backbone)

A 3D ResNet-18 is selected as the encoder due to its
proven effectiveness in various medical image analysis tasks,
particularly when dealing with small datasets. We use a pre-
trained variant of this model from [8], originally developed as
a part of a medical image segmentation network. Specifically
adapted for 3D volumetric data, the encoder processes the
single-channel brain MRI scans to capture abstract features
through residual blocks.

This encoded output can be fed into a decoder for a
segmentation task, which aims to delineate infarct areas in
brain MRIs. Alternatively, the encoded features can be utilized
for classification tasks, distinguishing between different types
of strokes. In addition, the model architecture supports a
multi-task learning approach, where both segmentation and
classification are performed simultaneously.

E. Decoder

The decoder in our framework complements the encoder and
classification head by reconstructing spatial representations
crucial for segmenting infarct regions from brain MRI images.
It utilizes transposed convolutional layers to upsample encoded
feature maps, restoring them to their original dimensions. This
process facilitates the localization of infarcted areas based on
learned features, integrating information across scales captured
during encoding. By working in tandem with the classification
head (which identifies stroke class), the decoder enhances
interpretability, providing insights into spatial distribution and
extent of infarcts.

F. Classification Head

The classification head in our framework plays a crucial role
in categorizing stroke subtypes, particularly focusing on AF,
from brain MRI images. Building upon the encoded features
from the encoder, the classification head utilizes a global
average pooling layer (GAP) and a linear layer to perform
classification. It integrates information across the encoded
representation to predict the presence of AF-related patterns
within the MRI scans.

By leveraging deep learning techniques, the classification
head enhances the model’s ability to discern subtle variations
indicative of AF, contributing to more accurate diagnosis
and risk assessment. This component not only identifies AF
but also provides probabilistic scores, aiding in the clinical
interpretation of findings and prioritizing patients according
to their risk levels.

IV. EXPERIMENTS

To evaluate our proposed framework, we carry out compre-
hensive experiments. First, we compare our model with the
existing work in the literature. Next, we conduct ablation stud-
ies to assess the impact of the multi-task learning approach.
Further, we visually inspect the model’s activation maps to
investigate its decision-making process.
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Fig. 1. Architecture of the proposed multi-task learning network for AF identification from brain MRI. (A) Overview of the model showing the input MRI
image processed through the encoder (pre-trained 3D ResNet-18) to extract features, followed by a decoder and a classification head in parallel. The model
outputs include segmentation masks and predicted class labels. (B) Detailed view of the decoder module highlighting 3D deconvolution layers that upsample
feature maps to reconstruct segmentation details and 3D convolution layers to refine the upsampled features. The number of output channels in each layer is
shown in parentheses.

A. Pre-processing and Data Augmentation

Pre-processing of medical images plays a critical role in
their analysis. In this study, we utilized simple yet effective
steps to ensure consistent spatial and physical resolutions
throughout the dataset. Standardizing these resolutions en-
hances training efficacy, accelerates convergence, and im-
proves overall performance. Specifically, all images and their
corresponding segmentation masks underwent resampling us-
ing the nearest interpolation method to achieve a physical
resolution of (8mm, 1mm, 1mm) in the z, x, and y directions,
respectively. Furthermore, both the images and masks were
resized to (32, 256, 256) dimensions. In addition, intensity
values were clipped to fall within the range of the 0.05th and
99.5th percentiles, and normalization was applied using the
min-max approach across all samples.

We also applied a series of data augmentations using the
Volumentations 3D package [26] to enhance robustness and
generalization in our training data. These included elastic
transformations, independent flips along the three axes, ran-
dom 90-degree rotation in the axial plane, Gaussian noise
addition, random cropping, and scaling.

B. Loss Functions

To train our model, we employ the summation of two
different loss functions tailored for our specific tasks: binary
cross-entropy with logits loss (BCEWithLogitsLoss) for the
AF identification task and a combination of Dice loss and
cross-entropy loss (DiceCELoss) for the segmentation task.
The binary cross-entropy with logits loss, denoted as LBCE,

is used for the AF identification task. This loss function
combines a sigmoid layer and the binary cross-entropy loss
in one single class. It is defined as:

LBCE = − 1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (1)

where N is the number of samples, yi is the ground truth
label (AF or LAA) for the ith sample, ŷi is the predicted prob-
ability for the ith sample, obtained by applying the sigmoid
function (σ) to the raw prediction (logit) xi, i.e.,,

ŷi = σ(xi) =
1

1 + e−xi
. (2)

For the segmentation task, we use a weighted combination
of Dice loss and cross-entropy loss. The Dice coefficient is
particularly effective for handling imbalanced data by focusing
on the overlap between the predicted and ground truth masks.
The cross-entropy loss focuses on the classification error for
each voxel within the image. The combined Dice cross-entropy
loss, denoted as LDiceCE, is defined as:

LDiceCE = λdiceLDice + λceLCE (3)

where λdice and λce are the weights for the Dice loss and
cross-entropy loss components, respectively. The Dice loss,
LDice, is given by:

LDice = 1− 1

N

N∑
n=1

2
∑V

i=1 pnigni∑V
i=1 [pni + gni]

(4)



TABLE II
COMPARISON WITH THE OTHER METHOD DEMONSTRATES THE EFFICACY OF OUR METHODOLOGY, SIGNIFICANTLY SURPASSING PREVIOUS RESEARCH.

Method Accuracy Precision Recall F1 score AUC-ROC

Zhang et al. [30] 70 63.8 92.5 75.5 79.9

Ours 80.87 ± 5.57 89.72 ± 5.50 78.10 ± 13.75 82.48 ± 7.51 87.48 ± 4.88

TABLE III
ABLATION STUDIES: WE PERFORMED AF IDENTIFICATION USING THE ENCODER AND THE CLASSIFICATION HEAD, UTILIZING THE CLASSIFICATION LOSS

SOLELY AND OMITTING THE SEGMENTATION MODULE AND LOSS. THE RESULTS UNDERSCORE THE EFFICACY OF THE MULTI-TASK LEARNING
APPROACH, SIGNIFICANTLY OUTPERFORMING THE CLASSIFICATION-ONLY METHOD.

Method Accuracy Precision Recall F1 score AUC-ROC

ResNet-18 (Classification) 73.48 ± 4.64 86.84 ± 5.67 62.55 ± 9.48 72.41 ± 7.74 80.25 ± 3.20

ResNet-18 (Multi-Task) 80.87 ± 5.57 89.72 ± 5.50 78.10 ± 13.75 82.48 ± 7.51 87.48 ± 4.88

where N is the number of samples, V is the number of
voxels in each sample, pni is the predicted probability for
voxel i in sample n, and gni is the ground truth label for voxel
i in sample n. And similar to (1), LCE for the segmentation
task for one image is given by:

LCE = − 1

V

V∑
i=1

[gi log pi + (1− gi) log(1− pi)] (5)

Where pi represents the predicted probability for the ith

voxel, gi is the ground truth label for the ith voxel, and V
denotes the total number of voxels. Subsequently, this loss is
averaged across all samples.

We hypothesize that including the segmentation loss in
the training process could potentially enhance the classifica-
tion performance, particularly for stroke etiologies and AF
identification, by forcing the model to focus on the infarct
regions. By learning to segment these areas, the model gains a
better understanding of the spatial and morphological features
associated with each etiology, thereby improving its ability to
classify AF from brain MRI scans accurately.

C. Implementation Details

The models were created using PyTorch [20] and trained on
an NVIDIA A100 GPU. Stochastic gradient descent (SGD)
served as the optimizer (learning rate for the encoder and
decoder = 0.0001, learning rate for the classification head
= 0.001, decay rate for step scheduler = 0.5, and scheduler
step size = 30). Training was performed for 200 epochs,
with a batch size set to 4. To mitigate overfitting, L2 reg-
ularization with a weight decay of 0.001 was applied. In
our implementation, we set λdice = 0.3 and λce = 0.7,
balancing the contributions of each loss component to the
overall segmentation loss.

V. EVALUATION

The model underwent rigorous evaluation via five-fold
cross-validation. This method involved partitioning the dataset
into five subsets, each containing 20% of the total images,

employing stratified sampling to maintain balanced class dis-
tributions across splits. Subsequently, the network employed
five independent training and evaluation cycles. During each
iteration, four subsets were utilized for training, while one
subset was used for evaluating the model’s performance. This
approach ensured a robust assessment of the model’s general-
ization and effectiveness across diverse subsets of the dataset.
We evaluated the performance of our classification framework
using standard metrics, including accuracy, precision, recall
(sensitivity), F1 score, and area under the receiver operating
characteristic curve (AUC-ROC).

A. AF Identification

We compare our AF identification model with the previous
work in the literature. [30] develop a model using MRI to
detect AF in stroke patients. They focused on combining ra-
diomic and semantic features extracted from CNNs to achieve
this. They used a dataset consisting of 489 patients to validate
their model, achieving an AUC-ROC of 79.9%. Through this
work, they highlighted a potential link between ischemic lesion
patterns and AF etiology. However, the lack of comprehensive
experiments and discussion makes it difficult to assess its
contributions.

Instead of extracting features from segmented images sim-
ilar to [30], we employed a multi-task learning approach to
train a segmentation and classification network simultaneously
to identify AF. This approach involved leveraging shared
features between segmentation and classification tasks. Our
approach yielded results that significantly outperformed theirs,
as demonstrated in Table II. Our model attained an AUC-ROC
of 87.48 ± 4.88, demonstrating that integrating segmentation
with classification tasks not only improves AF identification
accuracy but also enhances the interpretability of feature
extraction related to infarct regions.

B. Ablation Study

To investigate the effectiveness of the multi-task learn-
ing approach and analyze its impact, we conducted ablation
studies. In these experiments, we evaluated AF identification
using the encoder and the classification head, utilizing solely
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Fig. 2. Visual analysis of the proposed method’s performance in distinguishing between AF (A, B) and LAA (C, D) groups: From left to right, the first
image is an axial slice of the DWI images. The second image displays the ground truth segmentation masks, highlighting the infarct region within the image.
The highlighted areas in red indicate regions identified by experts as infarcted tissue. The third image is the activation map of the encoder’s last layer. The
activation maps indicate that, in the adopted multi-task learning approach, the model focuses mainly on infarct areas for decision-making regarding stroke
etiology identification.

the classification loss and omitting the segmentation module.
The results, detailed in Table III, underscore the efficacy of
our approach. The multi-task learning approach significantly
outperforms the classification-only method, highlighting its ef-
fectiveness. This superiority can be attributed to the use of the
segmentation masks and decoder, along with the segmentation
loss, which compels the encoder to extract features mainly
related to the infarct regions. These features, which are also
shared with the classification head, enhance the performance

of AF identification.

C. Visual Interpretation

To visually interpret the behavior of our model, we eval-
uated the activation maps generated from the last layer in
the encoder for both classes of AF and LAA. Samples of
these maps, along with an axial slice of the DWI images and
ground truth segmentation masks highlighting the location of
the infarct regions, are shown in Figure 2. The activation maps



show areas of the brain that the model considers important
for its decision-making process. In our multi-task learning ap-
proach (involving both classification and segmentation tasks),
these activation maps reveal that the model focuses mainly
on the infarct regions. This suggests that the model leverages
these areas to make informed decisions about stroke etiology,
distinguishing between AF and LAA patients.

D. Discussion

Our research aimed to identify AF from brain MRI scans
in post-stroke patients to assist in preventing AF-related
secondary strokes. To achieve this, we adopted a multi-task
learning approach emphasizing the encoding of infarct regions
by utilizing a segmentation loss. This strategy was designed to
enhance the classification performance of our model, which we
successfully demonstrated by achieving state-of-the-art results.
Our approach significantly outperformed the previous work,
showcasing its efficacy in AF identification.

It is important to note that our model did not achieve
satisfactory performance in segmentation. This limitation can
be attributed to several factors, primarily the simple network
architecture and the relatively small-scale dataset used for
training. We chose a basic architecture, utilizing a ResNet-
18 encoder and a straightforward decoder, to evaluate whether
segmentation aids in AF identification. Despite the effective-
ness of this approach, more sophisticated segmentation models
could potentially yield significantly better results. Future work
will employ advanced segmentation models, such as attention-
based networks, to enhance segmentation outcomes. We will
aim to develop a robust multi-task learning framework capable
of simultaneously identifying AF and accurately segmenting
infarct regions from brain MRI scans.

Addressing these challenges will not only enhance our
model’s segmentation capabilities but also contribute to ad-
vancing the field of automated diagnosis and treatment plan-
ning in post-stroke patients. Additionally, we aim to develop
a multi-modal framework that integrates imaging and clinical
information, typically used for AF risk assessment in patients,
to create a robust AF risk assessment pipeline. While DWI
and apparent diffusion coefficient (ADC) maps are commonly
used together in clinical practices for stroke evaluation, this
study relies solely on DWI images due to the unavailability of
ADC maps. Future research can incorporate these additional
imaging techniques to enhance the identification of AF-related
strokes.

Our current research focused on LAA and AF, two prevalent
stroke subtypes, while excluding other etiologies. These sub-
types are clinically significant due to their higher recurrence
rates and severity [5], [17]. Diagnosis of LAA typically
involves vascular imaging, while identifying AF necessitates
cardiac evaluation, contrasting with small artery occlusion
(SAO), which can often be detected using brain MRI alone
[4]. Moreover, targeted preventive measures for high-risk eti-
ologies like LAA and AF generally result in more substantial
risk reduction than lower-risk etiologies such as SAO [3],
underscoring their importance for early intervention. Further-

more, the “other determined cause” category encompasses
various complex stroke mechanisms that pose challenges for
categorization and are therefore excluded from our study. We
acknowledge that focusing on LAA and AF limits our study
to specific stroke subtypes. However, this research represents
the first attempt to establish a fully automated deep framework
for the early identification of AF as the stroke etiology from
brain MRI scans. By starting with these categories, which
provide clear clinical and imaging markers, we ensure a solid
foundation with reliable ground truth data. This approach lays
the groundwork for future expansion to include other stroke
mechanisms, thereby enhancing the framework’s clinical rel-
evance and utility.

VI. CONCLUSION

Atrial fibrillation (AF) is a prevalent cause of ischemic
stroke, increasing recurrent stroke risk by two-fold. Early
identification of AF during stroke onset is crucial for ef-
fective preventive strategies and treatment optimization. We
introduced a multi-task learning framework using post-stroke
DWI-MRI images for early detection of AF. Our deep learning
approach efficiently identified AF, demonstrating a streamlined
pipeline adaptable for analyzing brain MRI.

The proposed algorithm can seamlessly integrate into exist-
ing stroke diagnosis protocols as a risk stratification tool to
identify individuals at risk of secondary strokes linked to AF.
Importantly, our model aims to prioritize patients based on AF
risk but does not replace current AF detection methods or serve
as a definitive diagnostic tool. Patients identified as high-risk
should undergo thorough cardiac monitoring for AF diagnosis.
This facilitates targeted cardiac monitoring and definitive AF
diagnosis where warranted and possible anticoagulation as
clinically indicated. External validation is essential to assess
our model’s reliability and applicability across diverse datasets
and clinical settings.
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